UNIVERSIDAD NACIONAL

"PEDRO RUIZ GALLO"

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

TESIS

Para Optar el Título Profesional de:

INGENIERO MECÁNICO ELECTRICISTA

"Análisis de la generación distribuida para mejorar la calidad de energía eléctrica en el alimentador s2 de la empresa electro oriente s.a. – Iquitos."

Autor:

Bach. Jhon Teylor Roque Heredia

Asesor:

M.Sc. Ing. Jony Villalobos Cabrera

Lambayeque – Perú 2023

TESIS

Para Optar el Título Profesional de:

INGENIERO MECÁNICO ELECTRICISTA

"Análisis de la generación distribuida para mejorar la calidad de energía eléctrica en el alimentador s2 de la empresa electro oriente s.a. – Iquitos."

Bach. Jhon Teylor Roque Heredia

Aprobado por el Jurado Examinador

Presidente : Dr. Amado Aguinaga Paz.

Secretario : Ing. Héctor Antonio Oliden Núñez.

Miembro : Ing. Néstor Daniel Puyen Mateo.

Asesor : Msc. Jony Villalobos Cabrera.

Lambayeque – Perú 2023

UNIVERSIDAD NACIONAL "PEDRO RUIZ GALLO"

Facultad de Ingeniería Mecánica y Eléctrica

TESIS

TITULO:

"Análisis de la generación distribuida para mejorar la calidad de energía eléctrica en el alimentador s2 de la empresa electro oriente s.a. – Iquitos."

CONTENIDOS

CAPITULO I: PROBLEMA DE INVESTIGACIÓN.

CAPITULO II : MARCO TEÓRICO.

CAPITULO III : MARCO METODOLÓGICO.

CAPITULO IV : PROPUESTA DE INVESTIGACIÓN

CAPITULO V: ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS.

CAPITULO VI: CONCLUSIONES Y RECOMENDACIONES.

Bach. Jhon Teylor Roque Heredia

Dr. Amado Aguinaga Paz

PRESIDENTE

Ing. Néstor Daniel Puyen Mateo MIEMBRO

Ing. Héctor Antonio Oliden Núñez
SECRETARIO

Msc. Jony Villalobos Cabrera

ASESOR

Lambayeque – Perú 2023

DEDICATORIA

La realización de este proyecto está dedicada

.

AGRADECIMIENTO

Este proyecto es el terminado del

RESUMEN

La presente investigación aborda el problema en Alimentador S2 de la empresa Electro Oriente S.A. ubicado en la ciudad de Iquitos, que cuenta con un sistema eléctrico deficiente, el cual brinda un servicio de baja calidad, esto se traduce, por ejemplo, en la alta tasa de conexiones clandestinas que existen en varias zonas, especialmente, en las más alejadas. Asimismo, se evidencia el gran aumento de usuarios que se ha tenido en los últimos años, lo que causa la necesidad de ejecutar proyectos para ampliar y mejorar la red pública y sus sistemas de distribución.

Ante ello surge la pregunta: ¿Cómo mejorar la calidad de la energía eléctrica del alimentador S2 de la empresa Electro Oriente – Iguitos?. Lo que nos lleva a plantearnos el objetivo general de la investigación: Analizar la generación distribuida con la finalidad de mejorar la calidad de energía eléctrica en el alimentador S2 de la empresa Electro Oriente S.A. – Iguitos, con los siguientes Objetivos Específicos: Describir y analizar el estado situacional del alimentador S2 de la empresa Electro Oriente S.A. – Iguitos; evaluar el tipo de generación distribuida y sus componentes a conectarse en del alimentador S2 y realizar la evaluación económica de las propuestas a implementar. Concluyendo que el Alimentador S2 de la empresa Electro Oriente, está compuesto por un conductor AAAC, de sección 185 mm2, 150 mm2, 50 mm2, sector típico 2; comprende 12 subestación de distribución y 26 suministros en Media Tensión. Actualmente tiene un promedio de déficit de energía activa mensual es de 129281 kW-h, añadiéndole un 25% como margen de reserva obtenemos un déficit de energía activa mensual de 161601 kWh, con lo cual obtenemos un requerimiento de energía activa mensual diaria de 5387 kWh. La tecnología de generación será mediante el sistema fotovoltaico por tener una

puntuación de 0,25 ante las demás, su potencia es igual a 1,2 MW entrando en la

categoría de mediana generación distribuida de acuerdo a la Ley 28832, entre los

principales componentes de la planta se encuentran 3360 paneles fotovoltaicos de 360

Wp, 2 inversores de 630 kW y un transformador trifásico de 3 devanados de 1,5 MVA

con relación de voltaje de 350 V a 10 kV. Como resultado de la evaluación económica se

realizó se realizó para un periodo de 20 años, con una inversión inicial de S/. 5 886

767.46, una tasa descuento del 12%, los resultados muestran que es proyecto viable

técnica y económicamente por valores de S/. 1 617 974,00 en el VAN y de un TIR de

16%.

Palabra Clave: Generación Distribuida, Alimentador, Calidad de Energía Eléctrica.

5

ABSTRACT

The present investigation addresses the problem in Feeder S2 of the company Electro Oriente S.A. located in the city of Iquitos, which has a deficient electrical system, which provides a low-quality service, this translates, for example, into the high rate of clandestine connections that exist in several areas, especially in the most remote ones. Likewise, the great increase in users that has taken place in recent years is evident, which causes the need to execute projects to expand and improve the public network and its distribution systems.

Given this, the question arises: How to improve the quality of the electrical energy of the S2 feeder of the company Electro Oriente - Iquitos? Which leads us to consider the general objective of the research: Analyze distributed generation in order to improve the quality of electrical energy in the S2 feeder of the company Electro Oriente S.A. – Iquitos, with the following Specific Objectives: Describe and analyze the situational status of the S2 feeder of the company Electro Oriente S.A. – Iquitos; evaluate the type of distributed generation and its components to be connected to the S2 feeder and carry out the economic evaluation of the proposals to be implemented.

Concluding that the S2 Feeder of the company Electro Oriente, is composed of an AAAC conductor, section 185 mm2, 150 mm2, 50 mm2, typical sector 2; It includes 12 distribution substations and 26 Medium Voltage supplies. It currently has an average monthly active energy deficit of 129,281 kW-h, adding 25% as a reserve margin, we obtain a monthly active energy deficit of 161,601 kW-h, with which we obtain a daily monthly active energy requirement of 5387 kWh. The generation technology will be through the photovoltaic system for having a score of 0.25 compared to the others, its

power is equal to 1.2 MW entering the category of medium generation distributed according to Law 28832, among the main components of The plant contains 3,360 360 Wp photovoltaic panels, 2 630 kW inverters and a 1.5 MVA 3-winding three-phase transformer with a voltage ratio of 350 V to 10 kV. As a result of the economic evaluation, it was carried out over a period of 20 years, with an initial investment of S/. 5,886,767.46, a discount rate of 12%, the results show that it is a technically and economically viable project for values of S/. 1,617,974.00 in the VAN and an IRR of 16%..

Key Word: Distributed Generation, Feeder, Electric Power Quality

ÍNDICE

DE	DICATORIA	\	ii
ΑC	GRADECIMIE	ENTO	iii
RE	SUMEN		4
ΑE	STRACT		6
IN [.]	TRODUCCIÓ	ÓNN	. 13
1.	Capítulo I I	Problema de Investigación	. 14
	1.1.	Realidad Problemática	. 14
	1.2.	Formulación del Problema	. 17
	1.3.	Delimitación de la investigación	. 17
	1.3.1.	Delimitación Espacial	. 17
	1.3.2.	Delimitación Temporal	. 17
	1.4.	Justificación e importancia del estudio	. 17
	1.5.	Limitaciones de la investigación	. 18
	1.6.	Objetivos	. 19
	1.6.1.	Objetivos Generales	. 19
	1.6.2.	Objetivos Específicos	. 19
2.	Capítulo II	Marco Teórico	. 20
;	2.1.	Antecedentes de estudios	. 20
	2.1.1.	Contexto mundial	. 20

	2.1.2.	Contexto nacional	22
	2.1.3.	Contexto local	24
	2.2.	Desarrollo de la temática correspondiente al tema investigado	26
	2.2.1.	Generación Distribuida	26
	Confiabilid	lad en sistema de generación distribuida	26
	2.2.2.	Generación renovable y los sistemas eléctricos	27
	2.2.3.	Energías renovables no convencionales	30
	2.3.	Definición de términos	35
3.	Capítulo II	I Marco Metodológico	38
	3.1.	Tipo y Diseño de Investigación.	38
	3.1.1.	Tipo de Diseño	38
	3.1.2.	Tipo de Fin	38
	3.2.	Línea de Investigación	38
	3.3.	Población y Muestra de Estudio	38
	3.4.	Análisis Estadístico e Interpretación de Datos	39
	3.5.	Hipótesis	39
	3.6.	Diseño de Contrastación de Hipótesis	39
	3.7.	Optimización de Variables	40
	3.7.1.	Variables	40
	3.8.	Métodos y Técnicas de investigación	43

3.8.1.	Métodos	43
3.8.2.	Técnicas	43
3.9.	Instrumentos de investigación	43
4. Capítulo	IV Análisis e Interpretación de los Resultados	44
4.1.	Descripción y análisis del estado situacional del alimentador S2	de la
empresa E	lectro Oriente S.A. – Iquitos	44
4.2.	Tipo de generación distribuida y sus componentes a conectarse	en del
alimentado	or S2 de la empresa Electro Oriente S.A. – Iquitos	50
4.2.1.	Ubicación	50
4.2.2.	Tecnología a utilizar en el Sistema de Generación Distribuida	51
4.2.3.	Sistema fotovoltaico conectado a la Red	55
4.3.	Evaluación económica de las propuestas a implementar	77
4.3.1.	Análisis de la inversión	77
Capítulo V Co	onclusiones y Recomendaciones	80
5.1. Conclu	usiones	80
5.2. Recon	nendaciones	80
Referencia B	ibliográfica	82
5. Bibliogra	fía	82
Anovos		Q.1

ÍNDICE DE TABLAS

Tabla 1 Operacionalización de variables	41
Tabla 2: Características del Alimentador S2	44
Tabla 3: Subestaciones que se encuentran en el alimentador S2	45
Tabla 4: Déficit de energía en el Alimentador S2	47
Tabla 5: Criterios de Selección	53
Tabla 6: Resultados del método de ponderación	55
Tabla 7: Determinación de la hora pico solar (HPS)	56
Tabla 8: Combinación de paneles para atacar inversor	59
Tabla 9: Características del transformador PV 1260	63
Tabla 10: Separación entre filas de paneles	64
Tabla 11: Cálculo de conductor entre string y cuadros nivel I.	66
Tabla 12: Cálculo de conductor entre cuadros nivel I y DC Box II	66
Tabla 13: Calculo de conductor entre DC Box II y el inversor	67
Tabla 14: Calculo de conductor entre el inversor y el transformador	68
Tabla 15: Calculo de conductor entre transformador hasta la red	68
Tabla 16: Resumen de presupuesto base	77
Tabla 17: Costos de mantenimiento	78
Tabla 18: Índices Económicos	79

ÍNDICE DE FIGURAS

Figura 1: Diagrama de Carga Diario del Alimentador S2	49
Figura 2: Polígono del Alimentador	50
Figura 3: Selección de posible ubicación por SIG de la Dirección General de	
Electrificación Rural	50
Figura 4: Características de los puntos de generación distribuida	51
Figura 5: Agrupaciones de strings en paralelo, nivel I y II	61
Figura 6: Agrupación de inversores con transformador de 3 devanados	62
Figura 7: Separación entre filas de paneles	64
Figura 8: Corriente inversa en la generación de energía	69
Figura 9: Photovoltaic fuses 10x38mm/1000 Vdc, 10A	70
Figura 10: Protección contra sobre tensiones transitorias PSM3-40/1000	70
Figura 11: Protección contra cortocircuitos Compact NSX160 TM DC PV	71
Figura 12: Vigilante de aislamiento PV1000	72
Figura 13: Interruptor Schneider Electric	72
Figura 14: vigilador de aislamiento ISO-Check 230V	74
Figura 15: NS1250N - Micrologic 6.0	74
Figura 16: Diagrama de Carga Diario del Sistema Fotovoltaico	76

INTRODUCCIÓN

En un sistema eléctrico los Alimentadores, juegan un papel muy importante pues su función es llevar la electricidad a cada uno de los consumidores, tal es el caso del Alimentador S2 de la empresa Electro Oriente S.A. – Iquitos, cuenta con un sistema eléctrico deficiente, el cual brinda un servicio de baja calidad, esto se traduce, por ejemplo, en la alta tasa de conexiones clandestinas que existen en varias zonas, especialmente, en las más alejadas. Asimismo, se evidencia el gran aumento de usuarios que se ha tenido en los últimos años, lo que causa la necesidad de ejecutar proyectos para ampliar y mejorar la red pública y sus sistemas de distribución.

La necesidad de mejorar la calidad de energía eléctrica, se traduce en utilizar la Generación Distribuida, como un medio para lograr mejorar la calidad de energía eléctrica en dicho alimentador.

En el presente trabajo de investigación se ha estructurado en cinco capítulos, en el primer capítulo presentamos la realidad problemática, el capítulo II se abarca el Marco Teórico, en el capítulo III el Marco Metodológico, y en el capítulo IV los resultados y en el capítulo V las conclusiones y recomendaciones.

Capítulo I

Problema de Investigación

1.1. Realidad Problemática

En la década de los 80 y 90, se inició un proceso de regulación y reestructuración de la industria eléctrica con la finalidad de fomentar su desarrollo, como parte del proceso en la actividad de generación se introdujo mecanismos de libre mercado, mientras que las actividades de transmisión y distribución se consideraron como monopolios naturales que deberían ser regulados.

Así se hicieron necesarias regulaciones específicas sobre la calidad de energía eléctrica, estando las empresas eléctricas obligadas a ofrecer sus productos y servicios con un mínimo de calidad que, en caso de no ser cumplidos, dan lugar al pago de compensaciones y penalidades. La calidad de energía eléctrica comprende los siguientes aspectos:

- Calidad de Suministro o confiabilidad del sistema eléctrico, relacionada con las interrupciones.
- Calidad de Producto, relacionada con el nivel de tensión y las perturbaciones de dicha tensión.
- Calidad Comercial, relacionada con la facturación, atención comercial, reclamos, etc.

De estos la Calidad de energía eléctrica es la más importante y el que más se ha estudiado, históricamente se han destinado más recursos a los sistemas de

transmisión y generación que a los sistemas de distribución. El resultado es que actualmente la mayoría de los problemas de confiabilidad son debidos a interrupciones en sistemas de distribución.

En el Perú, en el mes de octubre de 1997, mediante el Decreto Supremo N° 020-97-EM, se aprobó la Norma Técnica de Calidad de los Servicios Eléctricos (NTCSE) que establece los niveles mínimos de la calidad de producto (tensión, frecuencia y perturbaciones), calidad de energía eléctrica (interrupciones) y calidad comercial y calidad de alumbrado público. Esta norma dispone la evaluación de la calidad de energía eléctrica a través de dos indicadores individuales:

- Número Total de Interrupciones por Cliente por Semestre (N) y
- Duración Total Ponderada de Interrupciones por Cliente por Semestre (D).

Las empresas eléctricas efectúan compensaciones (devolución de dinero en sus recibos de energía) a favor de los clientes por la calidad de energía eléctrica, es decir por el incumplimiento de los indicadores N y D.

Debido a que estos indicadores no reflejan el funcionamiento de toda la red por ser de medición individual (por cliente), con fecha 13 de abril de 2004 con Resolución N° 074-2004-OS/CD entra en vigencia el "Procedimiento para la Supervisión de la Operación de los Sistemas Eléctricos" con la finalidad de complementar la NTCSE. El objetivo de este procedimiento es que todas las concesionarias de distribución reporten información complementaria a la NTCSE (Norma Técnica de Calidad de

los Servicios Eléctricos) de las interrupciones ocurridas en todos los sistemas eléctricos de su concesión; además de establecer indicadores de performance (SAIDI y SAIFI) que reflejen el desempeño de los componentes (equipos de protección) de las instalaciones de los sistemas de distribución.

En los sistemas de distribución eléctrica que atiende Electro Oriente, se vienen incrementando las interrupciones, lo cual es importante evaluarlos para poder tomar decisiones que permitan corregir estos eventos.

Asimismo, los bajos niveles de penetración, la generación distribuida tiende a reducir las pérdidas, puesto que la generación local es absorbida por la carga local. Cuando la penetración aumenta, la generación comienza a exceder la demanda local (en particular para líneas de baja carga y/o en el momento de baja demanda), lo que conduce a revertir los flujos y a incrementar las pérdidas.

El Alimentador S2 de la empresa Electro Oriente S.A. cuenta con un sistema eléctrico deficiente, el cual brinda un servicio de baja calidad, esto se traduce, por ejemplo, en la alta tasa de conexiones clandestinas que existen en varias zonas, especialmente, en las más alejadas. Asimismo, se evidencia el gran aumento de usuarios que se ha tenido en los últimos años, lo que causa la necesidad de ejecutar proyectos para ampliar y mejorar la red pública y sus sistemas de distribución.

1.2. Formulación del Problema

¿Cómo mejorar la calidad de la energía eléctrica del alimentador S2 de la empresa Electro Oriente – Iquitos?

1.3. Delimitación de la investigación

1.3.1. Delimitación Espacial

El Alimentador S2, actualmente operada por la Concesión de Distribución de Electro Oriente, de la Provincia de Iquitos, Región de Iquitos.

1.3.2. Delimitación Temporal

El presente proyecto de investigación inicio el 01 de julio del 2022 con el objetivo de concluir en 06 meses, donde el tesista tuvo comunicación constante con los empleados de la empresa concesionaria Electro Oriente.

1.4. Justificación e importancia del estudio

1.4.1 Justificación Técnica

El proyecto de investigación se justifica en la necesidad de mejorar los niveles de tensión de la red eléctrica del país y la región, pudiendo así obtener sistema eléctrico confiable y seguro, con una alta disponibilidad de energía para los usuarios.

Asimismo, se requiere estudiar cómo afecta este tipo de conexiones en los parámetros eléctricos de la red, no solo de tensión, sino también de corriente, armónicos, potencia, frecuencia, entre otros.

1.4.2 Justificación Económica

Debido a que, según los expertos, la sobreoferta de energía puede verse seriamente reducida en los próximos tres (03) años, afectando a la demanda y los precios de venta de energía, es urgente impulsar otras formas de generación eléctrica, para mantener constante los niveles actuales de reserva y que obliguen a reducir los costos de electricidad.

Pudiendo producir energía eléctrica cerca de los puntos de consumo, se evitan los costos por transporte de energía, los cuales actualmente forman parte del mercado eléctrico peruano.

1.4.3 Justificación Social

Un Es muy importante implementar formas limpias y eficientes de generación eléctrica, con menores impactos ambientales, y esto pasa por la no dependencia de los combustibles fósiles: petróleo, gasolina, gas, carbón, etc.

1.4.4 Justificación Social

Un mejor acceso a la energía eléctrica trae consigo mejores oportunidades para acceder a una óptima calidad de vida: más puestos de trabajo, mejor educación, mejor servicio de salud, entre otros aspectos.

1.5. Limitaciones de la investigación

- Poca información en el registro de documentación y/o planos las algunas áreas.
- Poca facilidad de interacción con el personal debido al distanciamiento social ocasionado por el virus del covid 19.

1.6. Objetivos

1.6.1. Objetivos Generales

Analizar la generación distribuida con la finalidad de mejorar la calidad de energía eléctrica en el alimentador S2 de la empresa Electro Oriente S.A. – Iquitos.

1.6.2. Objetivos Específicos

- Describir y analizar el estado situacional del alimentador S2 de la empresa
 Electro Oriente S.A. Iquitos
- Evaluar el tipo de generación distribuida y sus componentes a conectarse en del alimentador S2 de la empresa Electro Oriente S.A. – Iquitos
- Realizar la evaluación económica de las propuestas a implementar.

Capítulo II

Marco Teórico

2.1. Antecedentes de estudios

2.1.1. Contexto mundial

(Sánchez Gonzáles, 2020) en su investigación titulada "Impacto de la generación distribuida en la confiabilidad de redes de distribución", tuvo como objetivo evaluar el impacto de la integración de fuentes de generación distribuida convencional en la confiabilidad de las redes de distribución. Realizando una evaluación del impacto sobre los indicadores de confiabilidad orientados al sistema y a los puntos de carga. Obteniendo como resultados que la inclusión de generación distribuida dentro de la red de distribución, trae consigo beneficios en los perfiles de voltaje, pero la parte central de este trabajo es el impacto que trae la inclusión de generación distribuida dentro de la red, para esto se presenta la metodología en primera de la evaluación de los indicadores de confiabilidad en el caso base, para posteriormente presentar la evaluación de la confiabilidad de la red de distribución incluyendo generación distribuida. En la parte de la evaluación de la confiabilidad en redes de distribución considerando generación distribuida, se considera su incorporación en tres ubicaciones o tomando en cuenta en diferentes lugares del punto común de acoplamiento; en el punto de carga, dentro de un segmento y al final de un alimentador para realizar un análisis del impacto que tiene durante el proceso de restauración. (Sánchez Gonzáles, 2020)

(López Espada, 2018), en el trabajo de investigación: "Generación Distribuida: Tecnologías de Generación y Sistemas de Almacenamiento de Energía", tuvo como objetivo dar a conocer algunas de las tecnologías de generación y almacenamiento de energía eléctrica, así como sus costes, eficiencias e impactos ambientales, concluyendo que la Generación Distribuida actualmente es una realidad que va en aumento debido a los beneficios que aporta. Puede generarse energía de manera más eficiente, reduciendo las pérdidas de distribución y transporte que se generan con la generación convencional, y llegando a lugares aislados donde no llegan las líneas eléctricas. Las distintas tecnologías de almacenamiento de energía mencionadas en este trabajo ofrecen una alternativa de cara al futuro, tanto para un posible autoconsumo, como para la independencia de la utilización de combustibles fósiles, que hoy siguen presentes en la generación eléctrica.

(Carvajal Quintero & Marín Jimenez, 2020) en el trabajo de investigación denominado "Impacto de la generación distribuida en el sistema eléctrico de potencia colombiano: un enfoque dinámico", tuvo como objetivo realizar un análisis de los beneficios que pueden traer el incentivar la instalación de plantas al sistema interconectado de potencia colombiano. Obteniendo como conclusiones que la generación de electricidad en Colombia ha disminuido la dependencia a grandes proyectos hidroeléctricos, situación positiva, dado que, en periodos de sequía, los precios de la electricidad se aumentan considerablemente. Sin embargo, se ha aumentado la generación con combustibles fósiles, situación negativa porque este

tipo de generación, además de afectarse por la volatilidad en los precios de combustible, presenta altos niveles de contaminación ambiental.

2.1.2. Contexto nacional

(Lorren Delgado, 2021), en su trabajo de investigación "Estudio de impactos de la generación distribuida renovable en redes eléctricas", tuvo como objetivo Actualmente, el mundo se encuentra en continuo desarrollo y crecimiento poblacional, esto implica que la demanda de energía eléctrica experimenta un constante aumento. En ese sentido, esta realidad motiva un abastecimiento eléctrico de mayores magnitudes, en primer lugar, de fuentes convencionales, las cuales se están agotando; por lo tanto, se debe generar energía eléctrica a partir de otras fuentes para llegar a completar esta creciente demanda. Concluyendo que que la generación distribuida no solo disminuye las pérdidas si no también mejora el perfil de tensiones de la red. Se estudiaron diversos escenarios sobre los cuales fueron comparados para observar qué soluciones son las mejores y en qué consisten estas mejoras en la red. Así mismo, se contribuye al cuidado del ambiente, ya que se trabaja con paneles solares, como consecuencia, se limitaría el uso de generadores tradicionales que producen dióxido de carbono y otras emisiones perjudiciales para el ambiente y la salud de las personas.

(Yaurivilca Rojas, 2021), en el trabajo de investigación "Microgeneración distribuida fotovoltaica para mejorar la confiabilidad del sistema eléctrico en el alimentador A4401 de la subestación Chupaca-2021", cuyo objetivo fue mejorar la confiabilidad del sistema eléctrico en el alimentador A4401 de la subestación Chupaca-2021, a

partir de la implementación del sistema de microgeneración distribuida fotovoltaica en los usuarios residenciales. Concluyendo que que partir de la implementación del sistema de microgeneración distribuida, se reducen las caídas de tensión en los usuarios cercanos a los postes de fin de línea en las redes del alimentador A4401, asimismo, se tienen mejoras en los indicadores SAIDI y SAIFI relacionados con la duración y frecuencia de interrupciones del servicio eléctrico durante el día, de igual manera se mejora la continuidad del sistema ante cualquier eventualidad de apertura de relé, cortocircuito que ocurra durante el día. La conclusión más relevante muestra la efectividad de la utilización de un sistema fotovoltaico conectado a la red de distribución para mejorar la confiabilidad del sistema eléctrico en el alimentador A4401 de la subestación Chupaca 2021.

(Sanchez Soto, 2017), en el trabajo de investigación titulado: "Efectos de la generación distribuida sobre los sistemas de protección de una red de distribución radial típica en 10 kv de la ciudad de Arequipa", tuvo como objetivo solucionar los efectos de la bidireccionalidad de la corriente eléctrica de una red de distribución con presencia de generación distribuida, mediante un adecuando esquema de protecciones, estudio de coordinación de protecciones y el ajuste de protecciones de la red de distribución con generación distribuida. Concluyendo que que el sistema de protección en la interconexión del GD con la red de distribución tendrá dos partes, primero detectar y aislar el funcionamiento de operación en isla del GD, segundo detectar y aislar la central de GD de la red de distribución ante cualquier falla producida en el sistema para evitar daños en la misma central de GD y en la

red de distribución, por aportes de corrientes de cortocircuito del GD a la red de distribución.

2.1.3. Contexto local

(Altamirano Fernández, 2021), en su trabajo de investigación "Smart grid para el aseguramiento de la calidad en la red de distribución eléctrica rural Amazonas -Cajamarca". La presente investigación tuvo como objetivo principal evaluar la factibilidad de implementar microrredes inteligentes (smart-grids) para el aseguramiento de la calidad de red de la red de distribución eléctrica rural de Amazonas - Cajamarca. La metodología fue de tipo aplicada con diseño no experimental – transversal, empleando el análisis documental como instrumentos de recolección de datos y el lenguaje de programación Python para procesamiento de datos. Los resultados obtenidos indicaron que, el estado actual de la red de distribución eléctrica de la zona de estudio cuenta con 225 subestaciones que, para el propósito del proyecto, han sido clasificadas en cuatro categorías: 100-160; 200-350, 400-800 y 1000 3200. Los sistemas de generación fotovoltaica han sido diseñados para suministrar como máximo el 25% de la capacidad máxima de la subestación, por lo que se han diseñado cuatro tipos de sistemas correspondiente a cada categoría: 25, 50, 100 y 300 kVA. Los sistemas fueron capaces de generar 860, 1460, 2920 y 8760 MWh, respectivamente, evitando generar 425.7, 722.7, 1445.4 y 4336.2 tCO, respectivamente. Del análisis económico se obtuvo que, el sistema de 25 kVA es el más rentable con un LCOE de 0.07 USD/kWh seguido del sistema de 300 kVA con un LCOE de 0.09 USD/kWh y VAN de 53 993.98 USD. Se concluyó

que, la calidad de la red de distribución de energía de la zona de Amazonas – Cajamarca pudo ser mejorada con la implementación de las Smart grids, siendo capaces de inyectar el 60% de la energía generada.

(Flores Ruiz, 2021), en la investigación titulada: "Viabilidad técnica de la aplicación de la generación distribuida en el alimentador c-219 Chiclayo". Cuyo objetivo fue la de Para mejorar la Confiabilidad del Alimentador C-219, producida por la sobrecarga, se diseñará un Sistema de Generación Distribuida: Central Solar, el mismo que tendrá una potencia de 1,2 MW, se ubicará en entre la vía de evitamiento y el cruce carretera a San José que es donde existe terrenos y no existe interferencia para instalar los paneles solares. La Central Solar estará compuesta por los siguientes equipos: 3360 paneles fotovoltaicos de 360Wp, 02 inversores para el conjunto de la instalación de 630 kW y un transformador de 1 260 kVA de 2 devanados de baja tensión conectados a la salida de los inversores, y un tercer devanado, que convertirá la tensión de salida al nivel de tensión de la red de media tensión, 10 kV. La inversión para instalar el Sistema de Generación Distribuida asciende a S/.6.751.630,93 (US\$ 2.015.412,22), con un costo de generación de 21,59 US\$/MWh, con una TIR de 14,93% y un VAN de US\$ 2 133 075,125.

2.2. Desarrollo de la temática correspondiente al tema investigado

2.2.1. Generación Distribuida

El concepto de generación distribuida (GD) comprende todas aquellas fuentes conectadas muy cerca de los centros de carga y que, por lo tanto, están integradas a la misma red de baja o media tensión en la que están los consumidores. Los beneficios que ofrece este tipo de sistema son:

- Se disminuyen de pérdidas técnicas debido a que la generación eléctrica se ejecuta en el mismo nivel de tensión donde se consume.
- Se verifican menores montos de inversión necesaria en red debido a la reducción de lapotencia neta demandada.
- Se da una eventual mejora en los perfiles de tensión a causa de un menor par eléctrico.

Confiabilidad en sistema de generación distribuida

El proceso de diseño de sistemas de generación distribuida implica tener una cantidad de unidades generadoras que garanticen una potencia nominal, estando disponibles para los usuarios de no existir paradas forzadas imprevistas. Las paradas forzadas en estecaso serán las asociadas directamente con las fallas, pues los mantenimientos preventivos generalmente se consideran en el diseño de la planta, mediante una capacidad de reserva.

Las fallas de las unidades, que ocasionan pérdidas forzadas de capacidad, representan la principal categoría de la confiabilidad de los sistemas de generación distribuida, pues precisamente con su ocurrencia y duración se incumplen las

funciones para las que se diseñó el sistema.

Puesto que la confiabilidad del sistema está en función de las fallas de las unidades generadoras, es importante determinar una caracterización de la ocurrencia de eventos de fallas. Como el tiempo que media entre una y otra falla de cualquier unidad del sistema constituye una variable aleatoria, estas aproximaciones tienen lugar mediante la teoría de las probabilidades.

La probabilidad de que ocurra una parada forzada en el sistema considera los datos históricos de dos componentes importantes: frecuencia de ocurrencia y la duración de estas.

El efecto de interés para evaluar los riesgos estará dado por el tiempo perdido anualmente (TPA), y por la capacidad de generación que en relación con estas interrupciones deja de entregarse en calidad de servicio.

Como existe una proporcionalidad directa entre el empleo de la capacidad de generación y el tiempo en operación a determinado régimen de explotación de la capacidad, la tasa de falla de una unidad generadora se puede expresar como la probabilidad de que se deje de producir cierta cantidad de energía debido a fracciones de tiempo perdido.

2.2.2. Generación renovable y los sistemas eléctricos

Al incorporarse los sistemas de generación distribuida (en especial las de energías renovables) a una red eléctrica, debe tenerse en cuenta que sus parámetros de funcionamiento están propensos a cambiar constantemente, debido a las características técnicas de dichas fuentes. La estabilidad de todo sistema eléctrico puede estudiarse bajo diferentes aspectos:

· Según el parámetro

De ángulo: Capacidad para mantener el sincronismo o balance de torque en las máquinas sincrónicas.

De frecuencia: Capacidad para balancear la potencia activa entre la generación y la carga.

De voltaje: Capacidad para mantener un mismo nivel de voltaje o tensión.

Según la duración

Transitoria: Gran perturbación que deriva de una primera oscilación aperiódica. El tiempo de estudio es mayor a 10 s.

De mediano plazo: Trastornos severos de grandes excursiones de voltaje y frecuencia. Tiene dinámicas rápidas y lentas, y el tiempo de estudio dura hasta varios minutos.

De largo plazo: La frecuencia del sistema es uniforme, de bajas dinámicas. El tiempo de estudio dura hasta varios minutos.

De tensión de gran perturbación: Gran perturbación en eventos de switcheo. Tiene una dinámica ULTC y cargas. Existen una coordinación de controles y protección.

Según la forma de señal

De pequeña señal: En este aspecto existe inestabilidad no oscilatoria, caracterizada por un insuficiente torque de sincronismo, o inestabilidad oscilatoria, caracterizada por un insuficiente torque de amortiguación, además de una acción de control inestable.

De voltaje de pequeña perturbación: Es un estado estable, tiene relaciones P/Q-V, márgenes de estabilidad y reserva Q.

Ahora bien, el impacto que tiene la generación renovable (eólica y solar, en la mayoría de casos) sobre las formas estabilidad de la red son las siguientes:

En cuanto a los generadores eólicos y solares, la naturaleza variable relacionada a su actividad, en muchos casos, no tiene ningún impacto importante en la estabilidad de frecuencia, incluyendo un rango de tiempo desde unos pocos segundos hasta varios minutos, los cuales sí son relevantes para el control secundario. Sin embargo, sí influye en la estabilidad de frecuencia de forma considerable los aerogeneradores de velocidad variable e inversores fotovoltaicos modernos que carecen de inercia. El principal impacto se resume a continuación:

La baja inercia de estos sistemas ocasiona una rápida variación de rango de frecuencia y unas caídas de frecuencia más profundas. Esto admite especial relevancia en el caso de redes en isla o en el caso haya aislamiento de una parte del sistema.

La cantidad total de reserva primaria y secundaria se mantiene, generalmente, sin cambio (asumiendo que los generadores eólicos e inversores solares poseen la capacidad FRT y LVRT) debido a que, en un extremo, las reservas no se definen por variabilidad eólica y solar, sino por la unidad de generación más grande.

Solo en el caso de sistemas eléctricos con niveles de penetración muy alta tanto de generación eólica como solar, será necesario que estas contribuyan a cubrir las reservas de control primario y secundario, siempre y cuando las plantas convencionales no puedan hacerlo.

La potencia reactiva no puede ser transmitida entre puntos muy distantes, por lo que debe estar a disposición en donde se encuentra la carga. Sin embargo, los parques eólicos, principalmente, son ubicados en zonas muy alejadas respecto a los puntos de consumo. Por este motivo, incluso si los parques eólicos son aptos para suministrar potencia reactiva, esta podría no estar disponible en el momento y en la localización donde sea requerida.

- Muchas plantas de generación eólicas y solares están conectadas a niveles de tensión más bajos que los de las grandes plantas de potencia. Típicamente la regulación de tensión está estrictamente basada en un concepto en el que los transformadores con cambiadores de taps controlan el voltaje del nivel inmediatamente inferior, lo cual significa que el balance de potencia reactiva es únicamente posible en la dirección del más alto al más bajo nivel de potencia. Así, la capacidad de potencia reactiva de un generador eólico o fotovoltaico integrado a los sistemas de subtransmisión o distribución podría no estar disponible para los principales niveles de transmisión. Más allá de lo descrito anteriormente, estas precisiones se pueden mitigar con costos moderados mediante la instalación de un sistema de compensación de potencia reactiva.

2.2.3. Energías renovables no convencionales

Cuando un cuerpo o sistema, en general toda la materia, está dispuesto para producir y brindar un trabajo (movimiento, generación de calor, emisión de luz, obtención de electricidad, etc.), se dice que posee una cierta cantidad de energía. Esta energía puede encontrarse bajo diversas condiciones: cinética, gravitatoria,

térmica, eléctrica, magnética, química, nuclear, radiante, etc., y además, puede convertirse de una condición a otra, debido al principio de conservación de la energía, que indica que "la energía no se crea ni se destruye, solo se transforma. Ahora bien, la energía renovable es aquella energía que puede aprovecharse de manera continua o constante debido a que no se acaba fácilmente, a diferencia de los combustibles fósiles, de los cuales puede decirse que tienen una fecha de agotamiento, aun cuando sea en varios años, y con la característica adicional que la primera mencionada contaminan menos al ambiente. Este tipo de energía puede presentarse en la radiación solar, el movimiento del viento, residuos agrícolas, el calor del subsuelo, el movimiento del mar, etc. La mayoría de las energías renovables provienen, de alguna u otra manera, de la energía del Sol.

a. Energía solar

Es la energía que puede obtenerse de manera inagotable a partir de las ondas electromagnéticas procedentes del Sol, en pocas palabras, de la radiación solar. Los mecanismos para aprovechar efectivamente esta energía son diversos: células fotovoltaicas, helióstatos o colectores térmicos, que permiten su transformación en electricidad directa para iluminación u operación de maquinaria, calor para agua sanitaria, calor para climatización de edificaciones, calor para generación eléctrica, entre otras aplicaciones.

En el Perú se tiene un potencial de radiación media diaria anual de 250 W/m2, aproximadamente; y en específico, en las regiones de Arequipa, Moquegua y Tacna, donde se ejecutan las grandes plantas fotovoltaicas del país.

b. Energía eólica

Esta energía inagotable se aprovecha del movimiento del viento o corrientes de aire, y es transformada en otras formas útiles de energía para las actividades humanas, principalmente en electricidad y mecánica.

El origen primario de esta energía se encuentra en las variaciones de presión dentro de la atmósfera, y que se debe a su calentamiento no uniforme a causa de la radiación solar; por eso se mencionó que la mayoría de energías renovables, en este caso la eólica, provienen directa o indirectamente del sol. A este fenómeno de calentamiento de la superficie terrestre y atmósfera se le añade la acción de la gravedad, equilibrando así el movimiento del viento,

En el Perú se tiene un potencial eólico total de 77,000 MW, sin embargo, debido a diversos factores, como por ejemplo la presencia de restos arqueológicos o reservas naturales, sólo es factible de aprovechamiento poco más de 22,450 MW. Las regiones de mayor potencial se encuentras en la costa del Perú, específicamente Ica, Piura y Lambayeque. Precisamente, en las dos primeras se encuentran las grandes plantas eólicas del país, y en la última ya existen estudios para la ejecución de una planta. Se recalca que los estudios de viabilidad técnico-económica de una planta eólica dura varios años, debido a la naturaleza variable del recurso primario: la velocidad del viento.

c. Energía de biomasa

Llamada también bioenergía, es otra de las energías inagotables que provienen de la energía del sol, a través del fenómeno natural de fotosíntesis vegetal, el cual le da un alto valor energético a la materia orgánica, que puede ser convertido en calor

o electricidad mediante procesos bioquímicos, termoquímicos o mecánicos como la combustión, gasificación, pirólisis o la digestión anaerobia. La materia orgánica utilizada es, en la gran mayoría de casos, desechos o residuos vegetales o animales: bagazo de caña de azúcar, cáscara de café, cáscara de arroz, heces de ganado vacuno, etc.

El potencial de bioenergía en el Perú, para generación eléctrica, es de 177 MW.

d. Energía de biogás

Se puede decir que este tipo de energía renovable es un derivado de la energía de biomasa, pues el recurso energético (biogás o gas biocombustible) se produce por la descomposición o biodegradación de la materia orgánica, dentro de un proceso llamado digestión anaeróbica, desarrollado en un ambiente herméticamente cerrado (llamado biodigestor), en ausencia de oxígeno y por acción de diversos microorganismos. El biogás producido se compone principalmente de metano (CH4), el cual varía entre 50% y 70% del volumen. Otros componentes son el dióxido de carbono (CO2), hidrógeno (H2), nitrógeno (N2), oxígeno (O2) y sulfuro de hidrógeno (H2S). Este gas combustible puede utilizarse para generar calor o electricidad, previo proceso de combustión y accionamiento de una turbina o motor. Se debe destacar que, del proceso de digestión anaerobia, se obtiene también un bioabono o biofertilizante, que puede utilizarse para las tierras de cultivo.

En cuanto al potencial de generación eléctrica a partir de biogás, el Perú cuenta con una capacidad de 5,151 MW.

e. Energía mini hidráulica

Esta energía renovable aprovecha la caída de agua de los ríos. Se le considera "no convencional" por tener una potencia menor a los 20 MW, siendo más pequeñas que las centrales convencionales y pudiendo ser implementada en la mayor parte de ríos.

El aprovechamiento se da mediante una turbina hidráulica y un generador que convierte la energía mecánica del agua en energía eléctrica.

Si bien es cierto que en esta clasificación no ingresan las plantas de mayor potencia a 20 MW, el potencial total estimado para la generación hidroeléctrica en el Perú es de 69,445 MW.

C. Marco regulatorio

Desde hace varios años el Perú ha venido aplicando diversos mecanismos legales para impulsar la generación eléctrica a partir de recursos renovables no convencionales, en atención de que se trata de una política nacional en materia energética. Dos de estos mecanismos son la de las subastas RER y la generación distribuida, aunque esta última aún no se termina de reglamentar. A continuación, se describen sus procedimientos:

a. Subastas RER

Es un concurso público convocado por el Ministerio de Energía y Minas (MEM), realizado al menos cada dos años con el objetivo de determinar una tarifa de adjudicación a cada proyecto de generación de RER. De igual forma, se determina que el MEM es el encargado de definir los requerimientos de energía (cantidad de

energía a subastar por cada tipo de tecnología), formular y aprobar las bases, así como, finalmente, firmar los contratos resultantes de las subastas. Por su parte, OSINERGMIN es el encargado de conducir las subastas, fijar los precios máximos y supervisar el cumplimiento de los contratos. Las subastas pueden ir orientadas para generación con conexión a la red eléctrica nacional o sin conexión a esta. En líneas generales, el procedimiento de la subasta es la siguiente:

- Se abre el sobre con la oferta de cada postulante y se ordenan los proyectos de menor a mayor precio. Se rechazan aquellas ofertas que superan el precio máximo fijado por la institución reguladora.
- El proyecto se adjudica si la energía ofertada es menor a la energía requerida.
- Si la energía requerida no fue totalmente cubierta y si hubo ofertas que superaron el precio máximo, entonces se revela dicho precio máximo.
- Si la energía ofertada está por encima de la energía requerida, se observa si existe adjudicación parcial solo si se cumple que el precio ofrecido no supera ni es igual al precio máximo.

2.3. Definición de términos

- Alimentador de media tensión: Es el circuito que recibe la energía de una subestación y la direcciona a varias cargas o consumidores.
- Caída de tensión: Diferencia de voltaje entre el punto de distribución eléctrica y
 el punto de consumo, la cual no puede superar el límite determinado por la
 norma técnica.
- Energía eólica: Energía cinética contenida en el movimiento del viento, y que

- puede ser convertida en energía eléctrica.
- Energía de biomasa: Energía química contenida en los residuos orgánicos vegetales y animales, y que puede ser transformada en energía eléctrica mediante la combustión directa o la gasificación.
- Energía solar fotovoltaica: Energía contenida en la luz solar y que puede ser convertida en energía eléctrica usando materiales semiconductores, mediante el efecto fotovoltaico.
- Energía renovable: Energía, ya sea eléctrica o térmica, obtenida a partir de recursos renovables, siendo estos generalmente: viento (energía eólica), radiación del sol (energía solar), recursos naturales animales y vegetales (energía de biomasa), calor del subsuelo (energía geotérmica), movimiento de las olas (energía mareomotriz), entre otros.
- Generación distribuida: Política energética por la cual un generador eléctrico se conecta en el punto de consumo o punto del usuario, y se integra a la red pública para un intercambio energético y comercial.
- Mediana generación distribuida: Instalación de generación distribuida cuya capacidad es mayor a 200 kW y menor a 10 MW. Este sistema se conecta en media tensión.
- Micro generación distribuida: Instalación de generación distribuida cuya potencia es menor que 200 kW. Este sistema puede conectarse tanto en baja tensión como en media tensión.
- Sistema híbrido: Conjunto de dos o más sistemas integrados en un solo para mejorar las características que tienen por sí solos.

 Sistema de distribución eléctrica: Sistema eléctrico que direcciona la energía proveniente de las unidades de generación hacia los consumidores finales: residenciales, comerciales, industriales y alumbrado público

Capítulo III

Marco Metodológico

3.1. Tipo y Diseño de Investigación.

3.1.1. Tipo de Diseño

3.1.1.1. Investigación Descriptiva Adaptativa

Conforme a Vera, Tam Malaga, & Oliveros Ramos, (2008) se desarrolla una investigación descriptiva debido a que se tomará y describirá el contexto en el que se engloba la investigación; y adaptativa debido a que tomaremos el conocimiento de una tecnología contemporánea para ser adaptada por los beneficios finales.

3.1.2. Tipo de Fin

3.1.2.1. Investigación Científica

Es una investigación científica porque recolecta información de documentos, experiencias y/o ideaciones, imaginación, ensayo error, y sigue etapas lógicas y sistemáticas que se van integrando en el proceso para poder cuantificar y resolver los problemas específicos al tema estudiado.

3.2. Línea de Investigación

Ingeniería y Tecnologías.

3.3. Población y Muestra de Estudio

La población es el Alimentador S2 de la empresa Electro Oriente S.A. – Iquitos.

La muestra es igual a la población, por tanto, es una muestra poblacional y está conformada por el Alimentador S2 de la empresa Electro Oriente S.A. – Iquitos

3.4. Análisis Estadístico e Interpretación de Datos

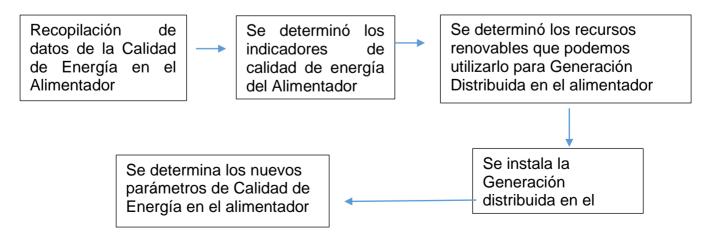
El análisis de datos se realizará mediante la estadística descriptiva, a través de:

Medidas de tendencia central

Media (Promedio)

Es la medida estadística de tendencia central más significativa y que nos permitirá determinar el valor medio de las pérdidas en los sistemas eléctricos.

Medida de dispersión


Parámetros estadísticos que indican como se alejan los datos respecto de la media aritmética. Sirven como indicador de la variabilidad de los datos. La medida de dispersión que utilizaremos es el rango.

3.5. Hipótesis

Mediante la Generación Distribuida se mejora la calidad de la energía eléctrica en el alimentador S2 de la empresa Electro Oriente – Iquitos.

3.6. Diseño de Contrastación de Hipótesis

Para conseguir los datos se siguió la siguiente secuencia:

3.7. Optimización de Variables

3.7.1. Variables

Variable Independiente: Generación distribuida

Variable Dependiente: Calidad de Energía Eléctrica.

.

Tabla 1Operacionalización de variables

Operacionalización de Variables

Variable	Definición conceptual	Definición operacional	Indicadores	Escala de medición
Variable Independiente Generación Distribuida	La generación distribuida, también conocida como generación in-situ, generación embebida, generación descentralizada, generación dispersa o energía distribuida, consiste básicamente en la generación de energía eléctrica por medio de muchas pequeñas fuentes de energía en lugares lo más próximos posibles a las cargas. (Vilcahuaman Sanabria, 2018, pp. 54)	Se determina el tipo de generación que se va ha utilizar y luego se evalúa el lugar donde se puede interconectar a la línea de transmisión.	Potencia aprovechable	Proporción
Variable	Calidad de energía eléctrica es el conjunto de parámetros	Operacionalmente se define como la calidad de la energía	System Avarage	
	físicos y técnicos que debe	es la alimentación y puesta de	Interruption Duration	
Dependiente	cumplir el producto de	tierra de equipos electrónicos	Index (SAIDI)	
Calidad de	electricidad. Dichos parámetros son, entre otros,	sensibles en una manera que sea adecuado para su	System Avarage	Proporción
Energía eléctrica	tensión, frecuencia y disponibilidad. (Minas, 1997, pp.23)	operación. Por otra parte, hay quien comenta que la calidad de la energía se entiende	Interruption Frecuency Index (SAIFI)	

cuando la energía eléctrica es suministrada a los equipos y dispositivos con las características y condiciones adecuadas que les permita mantener su continuidad sin que se afecte su desempeño ni
provoque fallas a sus componentes.

Nota fuente: Elaboración propia

3.8. Métodos y Técnicas de investigación

3.8.1. Métodos

Síntesis bibliográfica

Toda investigación cuantitativa y cualitativa tienen como base la síntesis bibliográfica que consiste en la busca de información en fuentes documentales, tales como revistas, periódicos, papers, libros, entrevistas, etc (MASSARIK, 2018).

3.8.2. Técnicas

Las técnicas que se plasman en esta tesis están en relación a las distintas etapas en las que se desarrolla el proyecto de investigación, además de estar relacionado con los métodos y los instrumentos.

Las técnicas que se aplicaran en la investigación se resumen a continuación:

Observación: Se aplicará con la finalidad de realizar un diagnóstico de la situación actual con respecto de las instalaciones eléctricas, se utiliza un cuaderno de apuntes, lapicero y cámara fotográfica.

3.9. Instrumentos de investigación

De acuerdo al método y técnicas seleccionado nos presenta los instrumentos que debemos usar, a continuación, los describiremos.

Ficha de Observación

Mediante la cual se podrá recopilar la información del estado actual de las subestaciones de distribución.

Capítulo IV

Análisis e Interpretación de los Resultados

4.1. Descripción y análisis del estado situacional del alimentador S2 de la empresa Electro Oriente S.A. – Iquitos

El Alimentador S2 de la empresa Electro Oriente, está compuesto por un conductor AAAC, de sección 185 mm², 150 mm², 50 mm², cuyas características lo apreciamos en la siguiente tabla:

Tabla 2: Características del Alimentador S2

Alimentador:	Nivel de Tensión	Sector Típico	N° de SED	N° suministros MT	N° suministros BT
S02	10 KV	2	12	26	1,757

Nota: Electro Oriente

Dicho alimentador está compuesto por las siguientes subestaciones de distribución:

 Tabla 3: Subestaciones que se encuentran en el alimentador S2

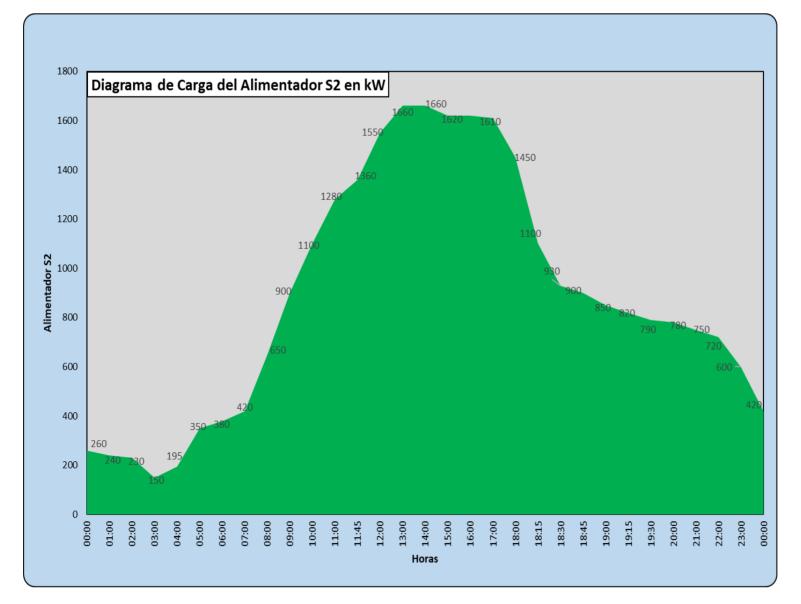
ITEM	SED Propias y Particulares	DIRECCIÓN	POTENCIA KVA	Sector	RADIAL	NÚMERO DE CLIENTES	Energía Distribuida kW.h	Alumbrado Público kW.h	Venta de Energía kW.h	Pérdidas de Energía kW.h	Porcentaje de Pérdidas %
19	0102005E	CA. REQUENA (CUADRA 3)	160	CA	S2	183	45,737	2,139	42,785	-813	1.78%
20	0102006E	CA. CONDAMINE / CA. PABLO ROSSEL	160	CA	S2	134	36,835	1,721	34,426	-689	1.87%
21	0102007E	JR. CALLAO / CA. CELENDIN	200	C2	S2	264	76,421	3,538	70,761	-2,123	2.78%
22	0102008E	CA. PABLO ROSSELL / CA. SAMANEZ OCAMPO	250	C2	S2	320	77,318	3,547	70,934	-2,837	3.67%
23	0102010E	JR. CONDAMINE (CUADRA 4)	250	CA	S2	216	55,717	2,570	51,399	-1,748	3.14%
24	0102015E	JR. FITZCARRALD (CUADRA 4)	640	CA	S2	416	147,320	6,852	137,042	-3,426	2.33%
25	0102025E	JR. NAUTA / JR. FITZCARRALD	250	C2	S2	110	58,894	2,734	54,684	-1,476	2.51%
26	0102026E	JR. NAUTA / JR. FITZCARRALD	250	C2	S2	101	98,953	4,590	91,793	-2,570	2.60%
27	0102030E	JR. NAPO (CUADRA 1)	640	CA	S2	225	156,269	7,155	143,104	-6,010	3.85%
28	0102035E	JR. SARGENTO LORES / JR. HUALLAGA	250	C4	S2	114	72,482	3,371	67,425	-1,686	2.33%
29	0102040E	JR. SARGENTO LORES / JR. PROSPERO	250	C4	S2	89	84,648	3,904	78,088	-2,655	3.14%
30	0102045E	JR. ARICA (CUADRA 2)	640	CA	S2	204	111,081	5,086	101,723	-4,272	3.85%

Nota: Electro Oriente

En el Anexo 1, podemos apreciar el recorrido del alimentador y la ubicación de las subestaciones.

En la siguiente tabla presentamos la energía activa distribuida y demandada, así como el déficit, correspondiente a los meses de mayo a setiembre de 2022, del alimentador S2. En esta tabla podemos apreciar el déficit de energía eléctrica de este alimentador, lo cual contribuye a que la calidad de energía eléctrica que distribuya no sea la que estipula la Norma Técnica de Calidad de los Servicios Eléctricos – NTCSE.

 Tabla 4: Déficit de energía en el Alimentador S2


ENERGIA ACTIVA (kW-h)										
Alimentador S2	DI	STRIBUIDA		DE	DEMANDADA			DEFICIT		
MES	HRS.F. PUNTA	HRS. PUNTA	TOTAL	HRS. F. PUNTA	HRS. PUNTA	TOTAL	HRS. F. PUNTA	HRS. PUNTA	TOTAL	
ABRIL	307812	1344528	1652340	437093	1344528	1781621	129281	0	129281	
MAYO	287812	1237655	1525467	408693	1237655	1646348	120881	0	120881	
JUNIO	304699	1439542	1744241	432672	1439542	1872214	127974	0	127974	
JULIO	305422	1338855	1644277	433699	1338855	1772554	128277	0	128277	
AGOSTO	302588	1328428	1631016	429675	1328428	1758103	127087	0	127087	
SETIEMBRE	301529	1353328	1654857	428171	1353328	1781499	126642	0	126642	
					Ene	rgía Activa	Promedio Mens	sual	126690	
					End	ergía Activ	a Máxima Mens	ual	129281	
					Energía	Activa Má	xima Mensual d	le la GD	161601	
					Energi	a Activa M	áxima Diaria de	la GD	5387	

Nota: Electro Oriente

Del cuadro anterior, podemos determinar que el promedio de déficit de energía activa mensual es de 129281 kW-h, añadiéndole un 25% como margen de reserva obtenemos un déficit de energía activa mensual de 161601 kW-h, con lo cual obtenemos un requerimiento de energía activa mensual diaria de 5387 kW-h. Esta es la Energía Activa con la cual dimensionaremos nuestro Sistema de Generación Distribuida.

A continuación, presentamos el Diagrama de Carga Diario típico del alimentador S2.

Figura 1: Diagrama de Carga Diario del Alimentador S2

HORA	Alimentador S2
00:00	260.000
01:00	240.000
02:00	230.000
03:00	150.000
04:00	195.000
05:00	350.000
06:00	380.000
07:00	420.000
08:00	650.000
09:00	900.000
10:00	1,100.000
11:00	1,280.000
11:45	1,360.000
12:00	1,550.000
13:00	1,660.000
14:00	1,660.000
15:00	1,620.000
16:00	1,620.000
17:00	1,610.000
18:00	1,450.000
18:15	1,100.000
18:30	930.000
18:45	900.000
19:00	850.000
19:15	820.000
19:30	790.000
20:00	780.000
21:00	750.000
22:00	720.000
23:00	600.000
24:00	420.000

4.2. Tipo de generación distribuida y sus componentes a conectarse en el alimentador S2 de la empresa Electro Oriente S.A. – Iquitos

4.2.1. Ubicación

Mediante la página web de la Dirección General de Electrificación Rural, se puede ubicar el recorrido del alimentador S-2, denotado en la imagen mediante el pentágono de color rojo:

Figura 2: Polígono del Alimentador

Nota: Dirección General de Electrificación Rural

Y a través del SIG de la Dirección General de Electrificación Rural, se identifica posibles terrenos parala instalación:

Figura 3: Selección de posible ubicación por SIG de la Dirección General de Electrificación Rural

Nota: Dirección General de Electrificación Rural

Luego con el software Google Earth pro, es de gran utilidad para marcar los posibles terrenos, hallando Ubicación y área.

Figura 4: Características de los puntos de generación distribuida

P-GD-SFCR	1	2
Zona	17M	17M
mE	695379	695128
mS	9586270	9585220
Área(m2)	34512.47	101466.45

Nota: Elaboración Propia

4.2.2. Tecnología a utilizar en el Sistema de Generación Distribuida

A continuación, se presentan los criterios de selección y posterior los resultados del proceso. Estos criterios han sido considerados por el autor, con su sustento correspondiente

Criterios de selección.

• Criterio 01: Tamaño de planta: su peso en la elección es de 10% y su escala va de 0 a 2:

0 una planta grande,

1 una planta mediana y

2 una central pequeña

Sustento: Indica la dimensión física de la planta de generación para diversas tecnologías, se ha considerado el puntaje anterior esto debido a que a mayor tamaño se incrementa el costo de la planta.

 Criterio 02: Costo de la tecnología de captación en función de la inversión: su peso en la elección es de 15% y su escala va de 0 a 1:

0 un costo mayor al 50% del total de la inversión

1 cuando su costo es menor al 50 % del total de la inversión

Sustento: la tecnología de captación en este caso son las turbinas y los paneles solares, este criterio indica la repercusión que tiene sobre el coste de la inversión, y se ha considerado un puntaje más alto cuando el costo de la tecnología es menor al 50% del total de la inversión.

 Requerimiento de mantenimiento: su peso en la elección es de 15% y su escala va de 0 a 2:

0 cuando es altamente exigido,

1 cuando es intermedio

2 ante una necesidad baja.

Sustento: indica que tan exigido y necesario es el mantenimiento, entre menos sea exigido el mantenimiento se otorga un puntaje más alto.

• Disponibilidad de equipos: su peso en la elección es de 25% y su escala va de

0 a 1:

0 si la tecnología es necesaria importarla

1 si se pueden conseguir dentro de Perú,

Sustento: indica si los equipos necesarios como turbinas o paneles solares se

disponen en el Perú o se tienen que importar, y se otorga un puntaje más alto

cundo los equipos no se traen de fuero, esto debido al costo extra de traer los

equipos al país.

Montaje de equipos electromecánicos: su peso en la elección es de 15% y su

escala va de 0 a 2:

0 cuando es difícil.

1 cuando es moderado y

2 la instalación fácil.

Sustento: indica el grado de complejidad de la instalación, y se considera el

puntaje más alto cuando el montaje a realizar es fácil.

• Impacto ambiental: su peso en la elección es de 20% y su escala va de 0 a 2:

0 si es significativo,

1 si es moderado

2 si es leve.

Sustento: indica el grado de contaminación que puede generar las diversas

tecnologías, y se asigna el valor más alto aquella tecnología cuyo impacto al medio

ambiente es poco significativo.

Tabla 5: Criterios de Selección

53

N°	Importancia	Criterio	Descripción	valor que puede tomar
			Grande	0
1	0,10	Tamaño de planta	Mediana	1
			Pequeña	2
		Costo de la tecnología de	> 50%	0
2	0,15	captación en función de la inversión	< 50%	1
		Degravimiente de	Alto	0
3		Requerimiento de mantenimiento	intermedio	1
		mantenimento	Bajo	2
4	0,25	Disponibilidad de equipos	Extranjeros	0
4	0,23	Disponibilidad de equipos	Nacionales	1
		Montaje de equipos	difícil	0
5	5 0,15	Montaje de equipos electromecánicos	moderado	1
		electioniecanicos	fácil	2
			significativo	0
6	0,20	Impacto ambiental	moderado	1
			leve	2

Nota: Elaboración propia.

Los sistemas que se han considerado en esta evaluación son: sistema eólico, fotovoltaico e hibrido que corresponde a la combinación de los dos anteriores.

Sistema Fotovoltaico: Tiene un tamaño de planta grande, un costo de inversión superior al 50%, un requerimiento de mantenimiento bajo, los equipos hay en el mercado nacional, el montaje de equipos electromecánicos es moderado y el impacto ambiental es leve.

Sistema Eólico: Tiene un tamaño de la planta es mediano, un costo de inversión superior al 50%, un requerimiento de mantenimiento es intermedio, los equipos hay que traerlos del extranjero, el montaje de equipos electromecánicos es moderado y el impacto ambiental es leve.

Sistema Híbrido Fotovoltaico Eólico: Tiene un tamaño de la planta es mediano, un costo de inversión superior al 50%, un requerimiento de mantenimiento es intermedio, los equipos hay que traerlos del extranjero, el montaje de equipos electromecánicos es difícil y el impacto ambiental es leve.

Tabla 6: Resultados del método de ponderación

SISTEMA	Tamaño de Planta	Costo de la tecnología de captación en función de la inversión	Requerimiento de mantenimiento	Disponibilidad de equipos	Montaje de equipos electromecánicos	Impacto ambiental	TOTAL
Sistema Fotovoltaico	0	0	2	1	1	2	1.1
Sistema Eólico	1	0	1	0	1	2	0.8
Sistema Híbrido		0		0		2	0.65

Nota: Elaboración propia.

De la Tabla anterior, podemos concluir que el Sistema Fotovoltaico es el Sistema más FACTIBLE para instalar en el Sistema de Generación Distribuida.

4.2.3. Sistema fotovoltaico conectado a la Red

A. Radiación solar a utilizar

Para determinar la radiación solar que se utilizará para dimensionar el sistema fotovoltaico se utilizó la información de la página de la web de la NASA, siguiendo la metodología del mes que se obtiene la radiación solar más baja:

Tabla 7: Determinación de la hora pico solar (HPS)

MES	AT	SFCR
	(kW-h/m²/día)	(kW-h/m²/día)
Enero	5,5	5,70
Febrero	5,5	5,55
Marzo	5	5,84
Abril	5	5,38
Mayo	5	4,89
Junio	5,5	4,47
Julio	5,5	4,48
Agosto	6	4,91
Setiembre	6	5,59
Octubre	6	5,95
Noviembre	6	5,98
Diciembre	6	5,86
Promedio	5,58	5,38
MAX	6	5,98
MIN	5	4,47

Nota: NASA

La radiación solar a utilizar es de 4,47 kW-h/m²/día.

B. Potencia teórica del sistema fotovoltaico

La potencia teórica del sistema fotovoltaico será:

$$P \ te\'orica = \frac{CD}{HSP}$$

Remplazando:

Carga de diseño	CD	5387	kW-h/día	5386708.57	W-h/día
Radiación promedio anual	RPA	4.47	kW-h/m²/día	1	
Hora solar pico	HSP	4.47	h		
Potencia	Pt	1205.08	kW	1.2	MW

La potencia del sistema de generación deber ser igual o mayor a 1,2 MW. Los 3360 módulos solares que han sido designados de la marca PEIMAR monocristalino

poseen una potencia de 360 Wp, y el criterio para su selección fue por su mayor eficiencia, superior a 20 % y su bajo costo en comparación a otros similares y se utilizara dos inversoresde 630 kW. Los datos técnicos se muestran en el **anexo 02 y 03** respectivamente.

C. Topología y bloques del sistema fotovoltaico

La agrupación en serie de paneles para formar un string para atacar a los inversores se determina a continuación:

$$N m \acute{a} x = \frac{U m \acute{a} x in v}{U o c}$$

Donde:

N máx: número máximo de paneles por string

U máx inv: tensión de entrada máxima en el inversor (V)

U oc: tensión en circuito abierto de los paneles fotovoltaicos(V)

Reemplazando se obtiene:

U máx inv	1000
Uoc	46,60
Nmáx	21

Se deberá comprobar que, para este número de paneles, el inversor puede trabajar en el punto de máxima potencia, PMP. La comprobación a realizar será:

$$Nps * U pmp < U pmpi$$

Siendo:

Nps: número de paneles por string

Upmp: tensión en el punto de máxima potencia de un panel (V)

Upmpi: tensión máxima del inversor para efectuar el seguimiento de

máxima potencia (V)

Reemplazando se obtiene:

Nps	21
Upmp	38
Upmpi	800
Nps*Upmp	798

Por tanto, se cumple la comprobación puesto que 798< 800 (V).

La agrupación en paralelo de strings para atacar al inversor vendrá determinado por la ecuación:

$$N \max str = \frac{P inv}{(Nps * Pp)}$$

Siendo:

Nmáx str: número máximo de strings en paralelo para atacar a un inversor

P inv: potencia del inversor kW

Nps: número de paneles en serie por string

Pp: potencia pico de un panel fotovoltaico kW

Reemplazando se obtiene:

P inv	630
Nps	21
Pp	0,36
Nmáx str	83

Las agrupaciones en paralelo se realizan a través de lo que suele denominarse "cuadros de cc nivel l", **anexo 04**. Estos cuadros son aptos para la conexión de varios circuitos de corriente continua en paralelo, disponiendo de protección por fusible para cada entrada positiva y negativa de cada string, realizando la unión de todos los circuitos a las salidas de los fusibles, y atacando a un interruptor de corte en carga que sirve para dar salida o cortar esta agrupación hacia el resto de la instalación. Los

cuadros de nivel I tienen número de entradas estandarizado, (8,16, 24). Teniendo en cuenta que estas agrupaciones en paralelo se realizan en 2 niveles de agrupamiento, se determina utilizar cuadros de 16 canales considerando tener una agrupación homogénea, por lo que serán necesarios 5 de estos cuadros para atacar al inversor:

$$P \ pico \ inv = N \ string * N \ ps * P \ p$$

Siendo:

P pico inv: potencia pico de cada inversor kW

N string: número de string

Nps: número de paneles en serie por string

Pp: potencia pico de un panel fotovoltaico kW

Reemplazando se obtiene:

Número de cuadros	5
Número de canales por cuadro	16
N strings	80
N ps	21
Рр	0,36
Ppic inv	605

La siguiente tabla muestra estos resultados:

Tabla 8: Combinación de paneles para atacar inversor

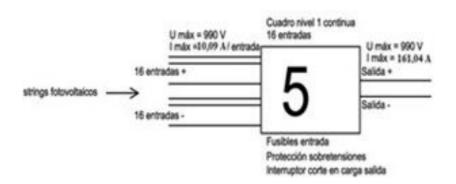
	paneles/canales/cuadros	I máx cc	I pmp	V máx abierto	V pmp	Pot kW
1 string/canal	21 paneles	10,09	9,48	990	798	7,56
cuadro I	16 canales	161,44	151,68	990	798	120,96
1 inversor 630 MS	5 cuadros I	807,2	758,4	990	798	605

Nota: Elaboración propia

El segundo nivel estará constituido por DCBox 06 Bprotec (anexo 05), que es un cuadro de fusibles de ambas polaridades adecuados a las intensidades de entrada.

De este cuadro salen los cables hacia los elementos de protección del inversor.

El arreglo de los paneles solares se realizará en 02 niveles: Nivel 01 y Nivel 02.


En el nivel 01, existirá 05 cuadros con 16 entradas cada uno. Y cada entrada será para 21 paneles conectados en serie.

En el nivel 02, existirán 02 cuadros, con 05 entradas cada uno.

Dicha distribución lo apreciamos en la siguiente figura:

Cuadro nivel 1 continua U máx * 990 V 16 entradas U máx = 990 V I máx ×10,69 A/ entrada I máx = 161,04 A 16 entradas + Salida + strings fotovoltaicos ---Salida -16 entradas -Fusibles entrada U máx + 990 V Protección sobretensiones 1 max = 807,02 A I máx= 161,44 A/ entrada Interruptor corte en carga salida 630 kW de cuadros nivel 2

Figura 5: Agrupaciones de strings en paralelo, nivel I y II

Nota: Elaboración propia

La agrupación de inversores y transformadores está determinada por la potencia pico del inversor en este caso de 605 kW, así pues, serán necesarios 2 inversores para el conjunto de la instalación de 630 kW y un transformador de 1 260 kVA de 2 devanados de baja tensión conectados a la salida de los inversores, y un tercer devanado, que convertirá la tensión de salida al nivel de tensión de la red de mediatensión, 10 kV.

En el caso de la serie elegida PV Minera del fabricante Schneider, son transformadores especializados para sistemas fotovoltaicos conectados a la red con potencia hasta 3,2 MVA,36 kV, **anexo 06**. La configuración del bloque del sistema se encuentra en la siguiente figura:

Prot DC

Prot AC

Prot AC

BT

Trafo
1260 kVA
Doble arrollamiento

MT

Celdas MT

Red MT

Figura 6: Agrupación de inversores con transformador de 3 devanados

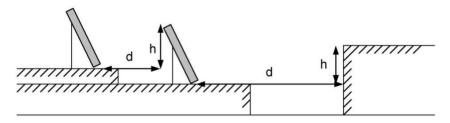
Nota: Elaboración propia

Las características del transformador seleccionado se encuentran en la siguiente tabla:

Tabla 9: Características del transformador PV 1260

Datos técnicos del transformador PV			
Fabricante		Schneider	
Denominación		Minera PV-1260	
Potencia	kVA	1260	
Tensión primaria entre fases	V	2x350	
Tensión secundaria	kV	10	
Nivel de tensión de aislamiento	kV	15	
(primario)			
Rango de regulación	%	-5, -2,5, 0, +2,5, +5	
Grupo de conexión		DY11Y11	
Pérdidas en vacío	W	1350	
Pérdidas en plena carga	W	11000	
Tensión de cortocircuito	%	6	
Tipo de refrigerante		aceite mineral	
Estándar		N 50464-1, EN 60076-	
		1 hasta 10	
Peso de aceite	kg	1150	
Peso total	kg	4200	

Nota: Schneider.


Disposición física, separación entre filas de paneles y estructura de soporte Cálculo del ángulo de inclinación:

$$\beta oPT = 3.7 + 0.69 * |\Phi| = 8.39$$
, donde Φ es latitud

Debido a la ubicación en donde se encuentra el sistema, temas de seguridad se opta por elegir un ángulo igual a 15°, recomendado en la guía de instalación de sistemas Fotovoltaicos domésticos del Ministerio de Energía y Minas.

El documento Pliego de Condiciones Técnicas de Instalaciones Conectadas a Red IDEA en su punto 5 del Anexo 3, indica que "La distancia d, medida sobre la horizontal, entre filas de módulos o entre una fila y un obstáculo de altura h que pueda proyectar sombras, se recomienda que sea tal que se garanticen al menos 4 horas de sol en torno al mediodía del solsticio de invierno.

Figura 7: Separación entre filas de paneles

La figura 6 ilustra este aspecto donde, en cualquier caso, d ha de ser como mínimo igual a h*k, siendo k un factor adimensional que se determina por:

$$k = \frac{1}{\tan(61^{\circ} - \text{latitud})}$$

Puesto que las filas de paneles deberán tener esta separación, la disposición elegida es situar filas de 2 paneles en altura, obteniendo 0,8 metros.

Tabla 10: Separación entre filas de paneles.

Datos paneles	y latitud	k resultante	Disposición	Resu	Itados
Alto panel(m)	1,957		Panel en altura	h(m)	d(m)
Ancho panel(m)	0,992		1 panel vertical	1,2726133	0,51909897
Inclinación (°)	15	0,4079	1 panel horizontal	0,64508554	0,26313039
Latitud (°)	-6,8045		2 paneles en		
			vertical	1,957	0,7982603

Nota: Elaboración propia

La distancia resultante es de aproximadamente 1 metro no obstante para la distribución de la planta se elige trabajar con 3 metros para que un camión grúa pueda realizar trabajos de instalación.

Los soportes de los paneles solares serán de estado fijo, se utilizarán 3 soportes para un bloque de 2 strings, cada uno con una distribución de 2x7, los materiales de la perfilería de la estructura están fabricados íntegramente en aluminio de alta calidad, mientras que la tornillería y accesorios están creados en acero inoxidable. Las patas son de acero galvanizado en caliente. Junto con la estructura se incluyen los

prensores laterales y centrales que se encargan de sujetar cada módulo solar por su marco de aluminio al perfil de la estructura. La empresa autosolar brinda la facilidad de ajustar el soporte para cualquier tamaño de panel, aunque posee las siguientes restricciones, la estructura no debe pasar de 3 metros de altura y 20° de inclinación, para poder soportar cargas de hasta 200N/m2, y una carga de viento de 29 m/s. El **anexo 07** muestra las características de los soportes.

No se ha considerado utilizar seguidores por presentar las desventajas, de ser más costosos que las estructuras fijas y requerir un mantenimiento adicional, ser más complejos de instalar y necesitar distancias entre grupos de paneles, no solo entre filas, su uso complicaría la distribución de los string en la planta requiriendo mayor espacio.

E. Cálculo de la sección de conductores en corriente continua

La disposición del cableado se ha divido en 3 niveles en la parte de corriente continua de esta instalación. La selección de los conductores está determinada porel criterio de caída de tensión, en donde esta variación entre el generador y el punto de interconexión a la red de distribución publica no será superior a 1,5%, para la intensidad nominal. La expresión a aplicar para el cálculo será la siguiente:

$$\Delta V = \frac{I \ pmp * \rho * 2 * L}{S}$$

Siendo:

ΔV: es la variación de tensión en voltios

 I_{pmp} : es la intensidad circulante en el tramo considerado, para el punto demáxima potencia.

 ρ : es la resistividad del cobre.

S: es la sección del cable (Los cables serán seleccionados de indeco por ser una marca comercial).

Cables desde strings hasta los cuadros de nivel I

Reemplazando se obtiene:

Tabla 11: Cálculo de conductor entre string y cuadros nivel I.

PRIMER TRAMO		
Símbolos	Magnitud	Unidades
V	722	V
Ipmp	9,48	А
ρ	0,017	Ωmm2/m
L	127	m
ΔV	0,015	
S	3,42	mm ²

Seleccionamos el conductor N2XY UNIPOLAR $0,6/1~kV~de~10~mm^2$, cada string requiere dos conductores, uno para la polaridad positiva y otro para la polaridad negativa, **anexo 08.**

Cables desde strings hasta los cuadros de nivel I

Reemplazando se obtiene:

Tabla 12: Cálculo de conductor entre cuadros nivel I y DC Box II.

SEGUNDO TRAMO			
Símbolos	Magnitud	Unidades	
V	722	V	
Ipmp	151,68	А	
ρ	0,017	Ωmm2/m	
L	44,46	m	
ΔV	0,015		
S	19,16	mm ²	

Seleccionamos el conductor N2XY UNIPOLAR $0,6/1~{\rm kV}$ de $25~mm^2$, cada string requiere dos conductores, uno para la polaridad positiva y otro para la polaridad negativa, **anexo 08.**

• Cables desde la DC Box II hasta el inversor: para este cálculo se asume que la

caída de tensión desde la DC Box II hasta el inversor, así como en la parte de alterna, va a ser despreciable, puesto que las DC Box II, los inversores y los transformadores están muy próximos entre sí. El proceso se simplifica utilizando la corriente del punto de máxima potencia multiplicada por 1,25, el resultado servirá para seleccionar el conductor.

$$d = Ipmp * 1,25$$

Siendo:

Id: corriente de diseño

 I_{pmp} : es la intensidad circulante en el tramo considerado, para el punto de máxima potencia.

Reemplazando se obtiene:

Tabla 13: Calculo de conductor entre DC Box II y el inversor.

TERCER TRAMO			
Símbolos	Magnitud	unidades	
Ipmp	758,4	Α	
а	1,25		
ld	948	Α	

Seleccionamos el conductor N2XY UNIPOLAR $0,6/1~\rm kV$ de $400~mm^2$, por poseer los valores de voltaje y amperaje necesarios, en este tramo se requerirán 2conductores que llegarán al inversor, **anexo 08**.

F. Cálculo de la sección de conductores en corriente alterna

Cables desde el inversor hasta el transformador:

Los parámetros que debe soportar el cable son los siguientes, una tensión trifásica sin neutro de 350 voltios entre fases a 60 hz y una corriente de 1040 amperios procedentes de la salida del inversor. Procediendo del mismo modo que en el punto

anterior, se obtienen los siguientes resultados:

Tabla 14: Calculo de conductor entre el inversor y el transformador.

QUINTO TRAMO			
Símbolos	Magnitud	Unidades	
Ipmp	1040	A	
а	1,25		
Id	1300	А	

Se opta por dos conductores N2XY UNIPOLAR 0,6/1~kV de $240~mm^2$ por cada una de las tres fases de salida del inversor, **anexo 08**.

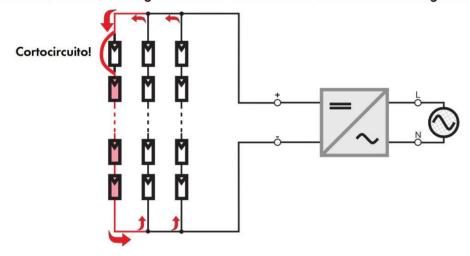
Cables desde el transformador hasta la red:

Los parámetros que debe soportar el cable son los siguientes, una tensión trifásicade 10 kV voltios a 60 hz y una corriente de 126 amperios procedentes de la salidadel transformador. Procediendo del mismo modo que en el punto anterior, se obtienen los siguientes resultados:

Tabla 15: Calculo de conductor entre transformador hasta la red.

	SEXTO TRAMO	
Símbolos	Magnitud	Unidades
Ipmp	126	Α
а	1.25	

Se opta por uno conductor NA2XSA2Y-S 6/10 Kv 3x1 de 35 mm^2 por cada una de las tres fases de salida del transformador, aunque el conductor posea un amperaje de 3 unidades menos al requerido esto no es problema porque lacorriente real que conducirá será menor por que la potencia de paneles que atacara al inversor será menor a la potencia nominal de este, **anexo 09**.


G. Protección en tramo de corriente continua

Cuadros de Nivel I.

En plantas fotovoltaicas que utilizan la configuración de string es la corriente inversa la que se debe tener más en cuenta pues puede causar la destrucción de ese string por el calentamiento local. La siguiente figura muestra cómo actúa la corriente inversa por un corto circuito:

Figura 8: Corriente inversa en la generación de energía

Corriente inversa en el String defectuoso = Suma de las corrientes de los Strings restantes

El **anexo 02** muestra los datos técnicos de los paneles solares donde se indica colocar fusibles como máximo de 15 amperios, la elección fue utilizar un fusible 10 A. que dejará trabajar al panel en su punto de máxima potencia igual 9,48 A y protegerá contra un cortocircuito donde la corriente alcanza los 10,04 A, las dimensiones y el voltaje del fusible son de 10x38mm,1000 Vdc respectivamente (**anexo 10**), recomendadas por array box en su ficha técnica. El fusible se representa en la siguiente figura:

Figura 9: Photovoltaic fuses 10x38mm/1000 Vdc, 10A

Los fenómenos atmosféricos causan tensiones transitorias (sobretensiones) por locual el array box recomienda descargadores de 1000Vdc del tipo 2, con una corriente máxima de 40 kA. La siguiente figura muestra el equipo que se utilizará y sus detalles técnicos en el **anexo 11**:

Figura 10: Protección contra sobre tensiones transitorias PSM3-40/1000

El dispositivo para proteger contra sobre cargas o cortocircuitos también tendrá la función de maniobra de conexión y desconexión bien manual o por control eléctrico será el interruptor Compact NSX160 TM DC PV, con la cualidad de soportar una corriente nominal de 160A y 1000 voltios, **anexo 12**.

Figura 11: Protección contra cortocircuitos Compact NSX160 TM DC PV

• Cuadros de Nivel II.

En los DC Box llegan los conductores procedentes de 5 cuadros de nivel 1, cada uno con una corriente de máxima potencia y de cortocircuito de 151,68 y 161,44 amperios respectivamente, por lo que se opta por fusibles de 160 A. del tipo NH1 1000VD, con capacidad de apertura de 30kA, **anexo 13**. Esta sección contara conla misma protección de sobretensión de 1000Vdc que los cuadros de nivel I. Antes que la energía ingrese al inversor se dispondrá un vigilante de aislamiento que cuente con 2 relés, uno actuara sobre el elemento de apertura y otro que actúeen el elemento de cierre. La elección del elemento está determinada por el voltaje que soportara en este caso se elige trabajar el ISO-CHECK PV1000

(anexo 14) ydos interruptores NSX 1000 NA DC PV (anexo 15) con capacidad de 1000 voltiosy 1000 amperios.

La siguiente figura muestra la descripción del elemento y su conexión:

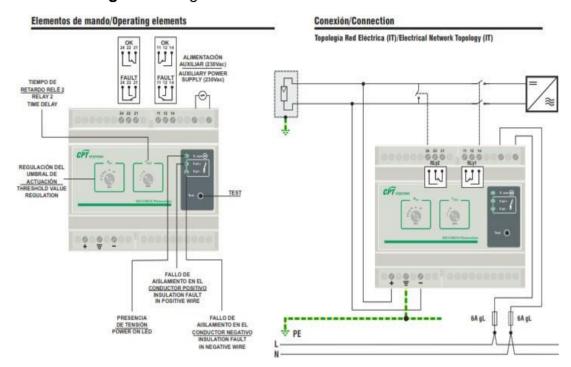


Figura 12: Vigilante de aislamiento PV1000

El primer interruptor será con bobina de disparo y el segundo actuará mediante un motor de accionamiento.

Figura 13: Interruptor Schneider Electric

H. Protección en tramo de corriente alterna

• Inversor y transformador.

La conexión entre estos elementos debe contar con equipos de protección de sobretensión y por sobre corriente, atiendo a la configuración del inversor y los pañales se deben considerar los siguientes parámetros:

- Una tensión entre fase de 350 V.
- Una corriente nominal igual a:

$$In = \frac{Pinv}{Vn * \sqrt{3}}$$

Siendo:

 I_n : corriente nominal A.

 P_{inv} : potencia del inversor (630kW).

 V_n : tensión nominal.

Obteniendo como resultado una corriente de 1,04 kA.

• Corriente de cortocircuito es igual:

$$Icc = \frac{In}{\varepsilon cc}$$

Siendo:

 I_n : corriente nominal en A.

 I_{CC} : corriente de cortocircuito en A.

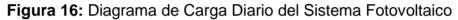
 ε_{CC} : tensión de cortocircuito del transformador (6 %).

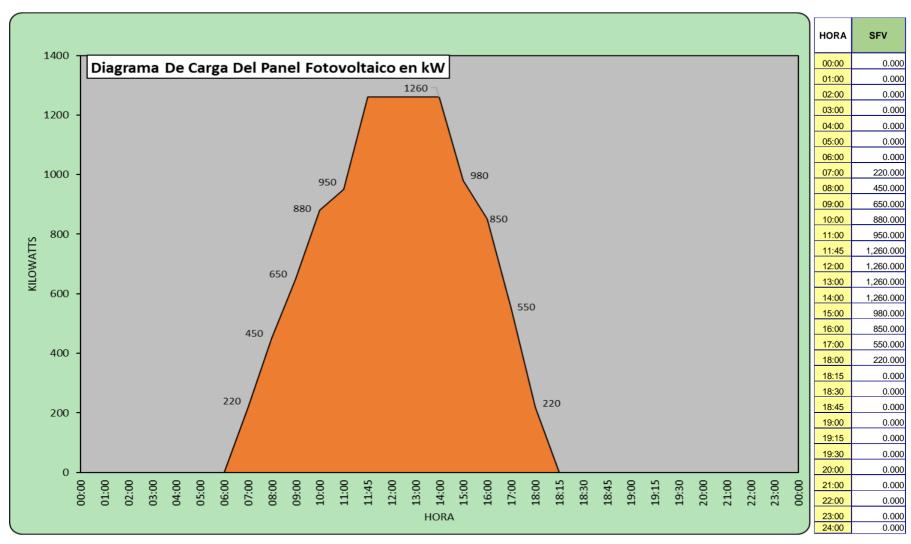
Obteniendo como resultado una corriente de cortocircuito de 17,3 kA.

Con estos parámetros establecidos se dispone a seleccionar un protector contra sobre tensión PSM3-40/400 TNC (anexo 16) y un vigilador de aislamiento ISO-Check 230V (anexo 17) quien tiene una tensión de vigilancia de hasta 440V, su representación se muestra en la siguiente figura:

Figura 14: vigilador de aislamiento ISO-Check 230V

El vigilador actuara mediante un interruptor compacto NS1250N - Micrologic 6.0 (anexo 18) que trabaja con una corriente nominal de 1250 amperios y una capacidad máxima de ruptura de 50kA rms con un sistema de 400V a 60 Hz. La siguiente figura representa el elemento de apertura:


Figura 15: NS1250N - Micrologic 6.0



Los elementos como transformador, inversor, DC Box estarán contenidos en el PV Box ST 1260 (anexo 19), una solución eficiente para los equipos seleccionados. La disposición física de la instalación se presenta en el anexo 20 ysu diagrama unifilar en el anexo 21.

I. Diagrama de Carga diario

A continuación, presentamos el diagrama de carga diario del sistema fotovoltaico:

4.3. Evaluación económica de las propuestas a implementar

En esta evaluación se tomará en cuenta los índices económicos el VAN y TIR, para determinar la factibilidad del proyecto.

4.3.1. Análisis de la inversión

Los parámetros más relevantes en el análisis son:

- Vida útil del sistema.
- Inversión del proyecto.
- Precio del KWh
- Tasa de descuento
- Costes de operación y mantenimiento

A. Egresos

El coste de poner en funcionamiento la planta fotovoltaica se resume en la siguiente tabla, los costos unitarios se pueden observar en el **anexo 22**.

Tabla 16: Resumen de presupuesto base

RESUMEN DEL PRESUPUESTO BASE PLANTA FOTOVOLTAICA DE 1.2 MW-ALIMNETADOR S2

Departamento : LORETO
Provincia : IQUITOS

ITEM	DESCRIPCIÓN	AMBIENTES EXTERIORES	PLANTA	AMBIENTE INTERIORES	TOTAL (S/.)
Α	SUMINISTRO DE MATERIALES	4,435,217.10	423,015.01	103,192.62	4,961,424.73
В	MONTAJE ELECTROMECÁNICO	27,825.00	13,650.00	16,800.00	58,275.00
С	TRANSPORTES	88,704.34	8,460.30	2,063.85	99,228.49
	COSTO DIRECTO (A+B+C)	4,551,746.44	445,125.31	122,056.47	5,118,928.22
	GASTOS GENERALES y UTILIDADES	682,761.97	66,768.80	18,308.47	767,839.23
	TOTAL	5,234,508.41	511,894.11	140,364.94	5,886,767.46

Nota: Elaboración propia

El proyecto tiene un costo total de S/. 5 886,767.46 millones de soles.

El costo del mantenimiento durante la vida útil del proyecto será 0,01% del coste de la inversión siendo este:

Tabla 17: Costos de mantenimiento

COSTO DE MANTENIMIENTO		
Mantenimiento de equipos (0,1%)	S/. 58 867.68	

B. Ingresos

El bono de carbono es un beneficio por disminuir la emisión de gases que provocan el efecto invernadero. Este se calcula teniendo en cuenta el factor de emisión igual a 0,385 kg de CO₂ eg/KWh.

Electricidad	3423543,40	kWh
		Kg de
Factor de emisión	0,39	CO ₂ eq/kWh
Kg de CO ₂ eq	1318064,21	Kg

BENEFICIO	\$	S/.
1T de CO ₂	S/.27,40	S/.93,71
MONTO	S/.123 513,16	

Por otra parte, se considera inyección de energía al sistema eléctrico:

ACTIVIDAD	kW	Horas	PRECIO DE kWh	TOTAL
Generación	1204	6	0,36	S/.949 233,6

Resultado de índices económicos

A partir de los datos anteriores expuesto se crea un flujo de caja teniendo como referencia una vida útil de 20 años, los resultados se aprecian en el **anexo 23.** Teniendo como valores de COP igual a 12%, se procede a calcular el VAN y TIR:

Tabla 18: Índices Económicos

VAN	S/.1 617 974,7
TIR	16%

El proyecto resulta ser rentable, obteniendo un valor actual neto igual a un millón seiscientos diecisiete mil novecientos setenta y cuatro soles y tasa interna de retorno 16%, mayor al 12%, ante esto el proyecto se puede llevar a cabo sin problema.

Capítulo V

Conclusiones y Recomendaciones

5.1. Conclusiones

- El Alimentador S2 de la empresa Electro Oriente, está compuesto por un conductor AAAC, de sección 185 mm², 150 mm², 50 mm², sector típico 2; comprende 12 subestación de distribución y 26 suministros en Media Tensión. Actualmente tiene un promedio de déficit de energía activa mensual es de 129281 kW-h, añadiéndole un 25% como margen de reserva obtenemos un déficit de energía activa mensual de 161601 kW-h, con lo cual obtenemos un requerimiento de energía activa mensual diaria de 5387 kW-h.
- La tecnología de generación será mediante el sistema fotovoltaico por tener una puntuación de 0,25 ante las demás, su potencia es igual a 1,2 MW entrando en la categoría de mediana generación distribuida de acuerdo a la Ley 28832, entre los principales componentes de la planta se encuentran 3360 paneles fotovoltaicos de 360 Wp, 2 inversores de 630 kW y un transformador trifásico de 3 devanados de 1,5 MVA con relación de voltaje de 350 V a 10 kV.
- La evaluación económica se realizó para un periodo de 20 años, con una inversión inicial de S/. 5 886 767,46, una tasa descuento del 12%, los resultados muestran que es proyecto viable técnica y económicamente por valores de S/. 1 617 974,00 en el VAN y de un TIR de 16%.

5.2. Recomendaciones

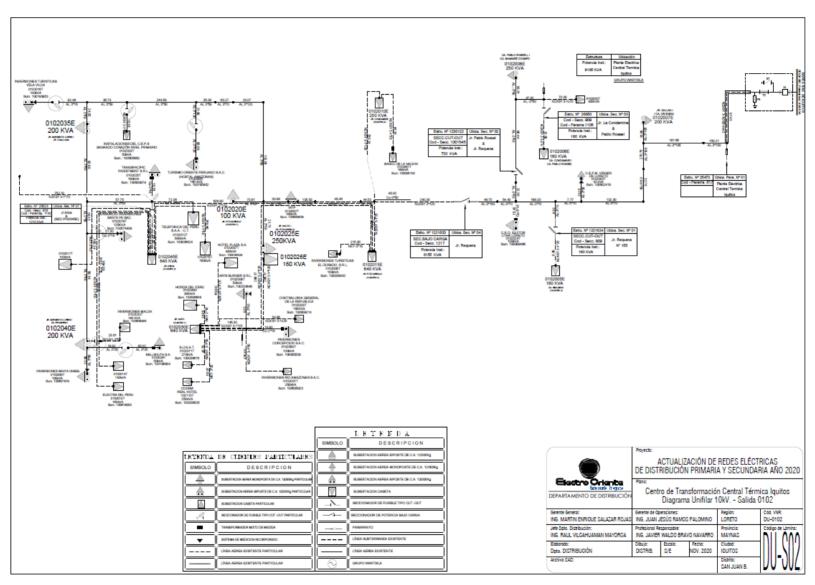
Como resultado del presente trabajo de investigación se recomienda:

Realizar un estudio para evaluar la calidad de energía eléctrica en el resto de

Alimentadores de la empresa Electro Oriente en Iquitos.

 Evaluar la generación distribuida en el resto de Alimentadores que opera la empresa Electro Oriente en la ciudad de Iquitos.

Referencia Bibliográfica


Bibliografía

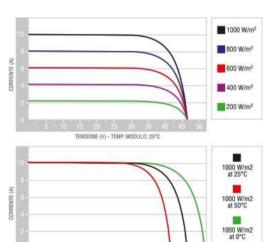
- Altamirano Fernández, J. L. (2021). Smart grid para el aseguramiento de la calidad en la red de distribución eléctrica rural Amazonas Cajamarca. Lambayeque: Univeridad Cesar Vallejo.
- Carvajal Quintero, S. X., & Marín Jimenez, J. D. (2020). *Impacto de la generación distribuida en el sistema eléctrico de potencia colombiano: un enfoque dinámico.*Colombia: Universidad Nacional de Colombia.
- Flores Ruiz, R. (2021). VIABILIDAD TÉCNICA DE LA APLICACIÓN DE LA GENERACIÓN DISTRIBUIDA EN EL ALIMENTADOR C-219 CHICLAYO. Lambayeque: Universidad Señor de Sipán.
- J., C., & Castillo, M. D. (2016). Desarrollo de una fuente de energía alternativa a través de la modificación de paneles fotovoltaicos para dispositivos móviles. Chiclayo: Universidad de Lambayeque.
- López Espada, J. M. (2018). *Generación Distribuida: Tecnologías de Generación y Sistemas de Almacenamiento de Energía.* Sevilla, España: Universidad de Sevilla.
- Lorren Delgado, R. E. (2021). Estudio de impactos de la generación distribuida renovable en redes eléctricas. Piura: Universidad de Pura.
- MASSARIK. (26 de abril de 2018). Cuáles son los métodos, técnicas e instrumentos de investigacion [Video]. Youtube. Obtenido de https://youtu.be/derHLaEnzRo
- Minas, M. d. (1997, pp.23). *Norma Técnica de Calidad de Servicios Eléctricas NTCSE.*Lima: Ministerio de Energía y Minas.
- Sánchez Gonzáles, O. (2020). *IMPACTO DE LA GENERACIÓN DISTRIBUIDA EN LA CONFIABILIDAD DE REDES DE DISTRIBUCIÓN.* México: INSTITUTO POLITÉCNICO NACIONAL.

- Sanchez Soto, C. E. (2017). EFECTOS DE LA GENERACIÓN DISTRIBUIDA SOBRE LOS SISTEMAS DE PROTECCIÓN DE UNA RED DE DISTRIBUCIÓN RADIAL TÍPICA EN 10 KV DE LA CIUDAD DE AREQUIPA. Arequipa: UNIVERSIDAD NACIONAL DE SAN AGUSTÍN.
- Vilcahuaman Sanabria, R. C. (2018, pp. 54). Sistema inteligente para supervisión y monitoreo de la calidad del servicio eléctrico. Callao: Universidad Nacional del Callao.
- Yaurivilca Rojas, J. P. (2021). Microgeneración distribuida fotovoltaica para mejorar la confiabilidad del sistema eléctrico en el alimentador A4401 de la subestación Chupaca-2021. Lima, Perú: Universidad Continental.

Anexos

Anexo 01: Diagrama Unifilar del Alimentador S2.

Anexo 02: DATOS TÉCNICOS MÓDULOS SOLARES



ELECTRICAL CHARACTERISTICS (STC)*	SG360M
Nominal Output (Pmax)	360 W
Flash Test Power Tolerance	0/+5 W
Voltage at Pmax (Vmp)	38 V
Current at Pmax (Imp)	9.48 A
Open Circuit Voltage (Voc)	46.6 V
Short Circuit Current (Isc)	10.09 A
	1500 V
Maximum System Voltage	15 A
Maximum Series Fuse Rating	18.54%
Module Efficiency	

Module Efficiency

MECHANICAL CHARACTERISTICS

Solar Cells	72 (6x12) monocrystalline PERC
Solar Cells Size	156x156 mm / 6x6"
Front Cover	3.2 mm / 0.12" thick, low iron tempered glass
Back Cover	TPT (Tedlar-PET-Tedlar)
Encapsulant	EVA (Ethylene vinyl acetate)
Frame	Anodized aluminium alloy, double wall
Frame finishing	Silver
Backsheet finishing	White
Diodes	3 Bypass diodes serviceable
Junction Box	IP67 rated
Connector	MC4 or compatible connector
Cables Length	900 mm / 35.4"
Cables Section	4.0 mm ² / 0.006 in ²
Dimensions	1957x992x40 mm /77x39x1.57"
Weight	22.5 Kg / 49.6 lbs
Max. Load	Certified to 5400 Pa

 d
 Certified to 5400 Pa
 45±2 °C

 Temperature Coefficient of Pmax
 -0.40 %/°C

 Temperature Coefficient of Voc
 -0.32 %/°C

 Temperature Coefficient of Isc
 0.047 %/°C

 Operating Temperature
 -40 °C ~ +85°C

Anexo 03: DATOS TÉCNICOS INVERSOR

Conext Core XC series

Device short name	XC 540	XC 630	XC 680
Electrical specifications			
Input (DC)			
Input voltage range, MPPT	440 - 800 V (at PF=1)	510 - 800 V (at PF=1)	550 - 800 V (at PF=1)
Static MPPT accuracy	>99.9%	>99.9%	>99.9%
		5% to 100% of nominal power Entire MPP (maximum power point) range PV generator Fill Factor from 60-80%	
Input voltage range, operating	440 - 885 V	510 - 885 V	550 - 885 V
Max. input voltage, open circuit	1000 V	1000 V	1000 V
Max. input current	1280 A	1280 A	1280 A
Max: input short circuit current	2000 A	2000 A	2000 A
Output (AC)			
Nominal output power	540 kVA	630 kVA	680 kVA
Real power	540 kW (at PF=1)	630 kW (at PF=1)	680 kW (at PF=1)
Reactive power range	+ / + 540 kVAr	+ / - 630 kVAr	+ / - 680 kVAr
Output voltage	300 V	350 V	380 V
Frequency	50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
Nominal output current	1040 A	1040 A	1040 A
Power factor settable range (Ppf dispatch)	0.8 to 1.0 leading and lagging	0.8 to 1.0 leading and lagging	0.8 to 1.0 leading and lagging
Power factor range (PQ dispatch)	0 to 1 leading and lagging	0 to 1 leading and lagging	0 to 1 leading and lagging
Harmonic distortion	< 3% at rated power	< 3% at rated power	< 3% at rated power
Efficiency (to IEC61683)			
Maximum (@ 50Hz)	98.5%	98.7%	98.9%
European (@ 50Hz)	98.3%	98.4%	98.6%
CEC (@ 60Hz)	98.5%	98.5%	98.7%
General specifications			
Power consumption, night time	< 100 W	< 100 W	< 100 W
IP degree of protection	IP20	IP20	IP20
Enclosure material	Steel	Steel	Steel
Seismic	IEEE-693-2005 High performance lev		- 0.00
Product weight	1590.0 kg (3505.0 lb)	1590.0 kg (3505.0 lb)	1590.0 kg (3505.0 lb)
Product dimensions (H x W x D)	208.5 x 240.0 x 66.0 cm (82.0 x 94.5 x 26.0 in)	208.5 x 240.0 x 66.0 cm (82.0 x 94.5 x 26.0 in)	208.5 x 240.0 x 66.0 cm (82.0 x 94.5 x 26.0 in)
Ambient air temperature for operation	-10°C to 45°C (14°F to 113°F) full pov	ver, Power derating to 50°C	
Operating altitude	1000 m, derating for higher altitudes		
Relative humidity	0 to 95% non-condensing		
Features and options			
Type of cooling	Temperature-dependent forced conv	ection cooling	
Display type	LCD multifunction removable display		
Communication interface	RS485/Modbus standard		
AC/DC disconnect	Load break rated DC disconnect and	AC circuit breaker standard	
Ground fault detection/interruption	Optional isolation monitoring relay or	GFDI with circuit breaker	
Sub-array combiner	Optional external combiners with vari		
Regulatory approvals			
Conext Core XC Series are CE marked for the	MC Directive (EN61000-6-2 and EN6100	0-6-4) and Low Voltage Directive (FN5	0178)
Conext Core XC Series complies	French order of April 23, 2008, IEC 6	1727, PO 12.3 (Spain), US-MV (FERC), RD1663/200 (Spain), RD661/2007 (S	661/661A, FRCC, WECC,

Anexo 04: DATOS TÉCNICOS CUADRO I

Device short name	AB08-160	AB16-160	AB16-300	AB24-300
Electrical specifications				
DC inputs				
Number of inputs	8	16	16	24
Max. voltage in open circuit	1000 Vdc	1000 Vdc	1000 Vdc	1000 Vdc
Max. input current in short circuit	25 A	25 A	25 A	25 A
Max. input current in short circuit at STO	C 20 A	20 A	20 A	20 A
DC output				
Max. output current in short circuit			www.	in the Co
at ambient temperature ≤ 40°C at ambient temperature ≤ 45°C	200 A 180 A	200 A 200 A	375 A 350 A	375 A 350 A
at ambient temperature ≤ 45°C at ambient temperature ≤ 50°C	160 A	200 A 200 A	315 A	315 A
Max. output current in short circuit at ST		200 A	01074	01074
at ambient temperature ≤ 40°C	160 A	160 A	300 A	300 A
at ambient temperature ≤ 45°C	145 A	160 A	280 A	280 A
at ambient temperature ≤ 50°C	125 A	160 A	250 A	250 A
AC supply*				
Voltage at 50/60 Hz	230 V + 10 / -15%	230 V + 10 / -15%	230 V + 10 / -15%	230 V + 10 / -15%
Environmental specifications (in ope	ration)			
Ambient temperature	-25°C to +50°C, above*	-25°C to +50°C, above*	-25°C to +50°C, above*	-25°C to +50°C, above*
Relative humidity	0 to 100% condensing	0 to 100% condensing	0 to 100% condensing	0 to 100% condensing
Altitude				g 0 to 2000 m without derating
Mechanical specifications			9	99
Enclosure				
Туре	Outdor use full insulating	cabinet (polyester reinforced	with fiharalass)	
Fire withstand		not propagate fire during the glo		on fron
Color	RAL 7032, grey	RAL 7032, grey	RAL 7032, grey	RAL 7032, grey
Product	TIAL TOOL, grey	TINE 7002, grey	TITL TOOK, grey	TINE 1002, gray
Dimensions (H x W x D)	84.7 x 63.6 x 30.0 cm	105.6 x 85.2 x 35.0 cm	105.6 x 85.2 x 35.0 cm	105.6 x 85.2 x 35.0 cm
	(33.3 x 25.0 x 11.8 in)	(41.6 x 33.5 x 13.8 in)	(41.6 x 33.5 x 13.8 in)	(41.6 x 33.5 x 13.8 in)
Weight (protect / monitored / controlled)	33.0 / 37.0 / 40.0 kg (72.8 / 81.6 / 88.1 lb)	58.0 / 62.0 / 65.0 kg (127.9 / 136.7 / 143.3 lb)	63.0 / 67.0 / 71.0 kg (138.9 / 147.7 / 156.5 lb)	67.0 / 71.0 / 75.0 kg (147.7 / 156.5 / 165.3 lb)
Mounting	Floor-standing on suppor	t, wall-fixing or attached with le	ugs (must be installed proted	ted from direct sunshine)
Degrees of protection	IP54 (IP55 with optional of	overs), IK10		
Features				
Protection				
DC inputs overcurrent protection	Protection on both polarit	ies, gPV fuses, size 10 x 38 (fu	uses not provided with produ	ct)
DC overvoltage protection	Surge arrester, 1000 Vdc			
AC supply overvoltage protection*	Surge arrester, 230 Vac.			
Electric shock protection	Class II equipment	#K		
Monitoring and control*				
DC input currents*	0 to 30 A, accuracy +/- 0	.5% full scale (one measureme	ent per input)	
DC voltage*	0 to 1000 V, accuracy +/-			
Internal temperature**	-30 to +120°C, accuracy			
Temperature sensor input***		+/- 1°C, for external PT1000 2	wires temperature sensor	
2 x irradiance sensor inputs***		y +/- 0.5% full scale, for extern		
Communication**		Modbus RTU / RS485 link	iai 4-20 IIIA III aulainee SEIISUI	
Switch disconnector remote control****	Motor pack and MX shun	r release		
Compliance	IEO (EN 61420 4 204	420.0		
LV switchgear	IEC / EN 61439-1 and 61-		- 2004 (400 / 25	
CE marking	According LV directive 20	006 / 95 / CE and EMC directly	ve 2004 / 108 / CE	
Available models				
Protect: protection only	PVSAB31101	PVSAB31201	PVSAB31301	PVSAB31401
Monitored: protection and monitoring	PVSAB31111	PVSAB31211	PVSAB31311	PVSAB31411
Controlled: Protection, monitoring and switch control	PVSAB31121	PVSAB31221	PVSAB31321	PVSAB31421
Optional weather module*	PVSAB31021	PVSAB31021	PVSAB31021	PVSAB31021

Anexo 05: DATOS TÉCNICOS CUADRO II

DC Box // PV array combiner box.

solar schneider-electric com 1.2

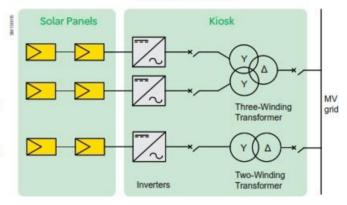
Device short name		DC06B Manitored		DC10B Monitored	
Electrical specifications		10. 10		170	
Input (DC)		53 /5.			
Number of inputs	6	6	10	10	
Max, voltage in open circuit	1000 V	1000 V	1000 V	1000 V	
Max. input current in short circuit	375 A	375 A	200 A	200 A	
Max. input current in short circuit @ STC	300 A	300 A	160 A	160 A	
Outpot (DC)	12500000		100000	5.000000	
Max. output current in short circuit	2000 A	2000 A	2000 A	2000 A	
Max. output current in short circuit @ SCT	1600 A	1600 A	1600 A	1600 A	
Max. output current in operation	1280 A	1280 A	1280 A	1280 A	
Max. thermal dissipation in operation @ 1280A ^a	250 W	300 W	250 W	300 W	
AC supply					
Voltage at 50/60 Hz		230 V + 10/-15%	*	230 V + 10/-15%	
Internal consumption		60 VA		60 VA	
Additional consumption for heater		170 VA	-	170 VA	
Environmental specifications (in operation)				The second secon	
Ambient air temperature for operation	-10°C to 55°C (23°F to 131°F)	-10°C to 55°C (23°F to 131°F)	-10°C to 55°C (23°F to 131°F)	-10°C to 55°C (23°F to 131°F)	
Operating altitude	0 to 2000 m without derating	0 to 2000 m without derating	0 to 2000 m without derating	0 to 2000 m without derating	
Relative humidity	0 to 100%, condensing	0 to 100%, condensing, control of humidity by using an internal controlled heater	0 to 100%, condensing	0 to 100%, condensing, control of humidity by using an internal controlled heats	
General specifications		di	-		
Enclosure				T	
Enclosure material		Indoor use, metallic ca	abinet with two doors	-	
Color		RAL 703	5, grey		
Product					
Product weight	180.0 kg (396.8 lb)	190.0 kg (418.9 lb)	200.0 kg (440.9 lb)	210.0 kg (463.0 lb)	
Product dimensions (H x W x D)		206.5 x 80.0 x 60.0 cm	(81.3 x 31.5 x 23.6 in)		
Device mounting		Floor-sta	anding		
Degrees of protection		IP20,	IK10		
Features				150	
Protection					
DC input overcurrent protection*		Protection on both p	olarities, gPV fuses	-	
Range of fuses (for other ratings, contact Schneider Electric)	315 A, 355 A, 400 A	315 A, 355 A, 400 A	160 A, 200 A, 250 A	160 A, 200 A, 250 A	
Electric shock protection		Class I eq	uipment	33	
Monitoring		260			
DC input currents (one measurement per input)	15:50	0 to 400 A, accuracy +/- 2% full scale	#	0 to 200 A, accuracy +/- 2% full scale	
Communication interface	120	RS485 / Modbus RTU		RS485 / Modbus RTU	
Relative humidity control by heater		Local setting range 20-80%	£	Local setting range 20-80'	
Regulatory approvals		A			
Electrical safety		CE marked for the Low Volta	age Directive 2006-95-EC		
EMC		CE marked for the EMC	The same of the sa		
LV switchgear assemblies	IEC/EN 61439-1, IEC/EN 61439-2				
Available models		//		2.30	
Part number	PVSDC31101	PVSDC31111	PVSDC31201	PVSDC31211	

Anexo 06: MINERA PV TRANSFORMADORES PARA SISTEMAS FV

Minera PV transformers are the ideal solution for photovoltaic systems. The technology used along with the appropriate sizing of the core, the framework and the high quality materials used result to the most suitable product in terms of quality, reliability, efficiency and cost effectiveness.

Three-Winding Transformer features:

- Galvanic isolation between the solar inverter and the feeding network
- Voltage step-up from the inverter output to the MV feeding network
- · Wound magnetic core for :
 - · standard or low losses
 - · minimum sound levels and low inrush current
- High mechanical strength LV windings comprise of two windings made of aluminium or copper both connected in wye (Y) with or without neutral point (i.e. Dy11y11 or Dyn11yn11)
- · Natural or air-forced cooling system
- Robust and oil tight mechanical construction with customized overall dimensions
- · Insulating liquid may be mineral or vegetable oil
- · High quality surface protection
- Protection and monitoring with devices that offer oil level indication, gas detection, pressure and temperature control.



Transformer in PV box

 other power ratings available upon customer's request

Minera PV Transformers

for photovoltaic systems

Anexo 07: SOPORTE DE PANELES FOTOVOLTAICOS

- Fijación de la Estructura: Elevada 3 metros sobre el suelo. Fila doble
- Material de la Estructura: Aluminio
- Compatibilidad de los Paneles Solares: Para paneles de cualquier tamaño.
 Adjuntar las medidas del módulo solar en el pedido para procesarlo.
- Garantía de la Estructura: 10 años de garantía

La estructura elevada tipo ELV915 es indicada para ser utilizada sobre el propio suelo o cualquier cubierta plana. Le proporcionaremos a los paneles una inclinación de 20º respecto al suelo horizontal para tener una inclinación óptima. Hay que tener en cuenta que la orientación de la inclinación debe ser hacia el norte, por encontrarnos en el hemisferio sur.

La Estructura Elevada ELV 2x7 Paneles 20º 3M está diseñada para poder soportar cargas de nieve de hasta 200N/m2, y una carga de viento de 29 m/s. Para que La Estructura Elevada ELV 2x7 Paneles 20º 3M pueda soportar dichas cargas, es necesario que previamente se compruebe la fijación de la superficie sobre la que se ancla la estructura, y se compruebe que la misma es capaz de aguantar dichas cargas. No se debe instalar sobre un suelo arcilloso o inestable ya que la tensión provocada por el viento al pasar por debajo de los paneles puede provocar que el anclaje se salga por la fuerza vertical que provoca. Se aconseja que las patas se anclen a una superficie de hormigón o concreto para poder realizar una fijación fiable.

Anexo 08: CABLE INDECO- N2XY

Usos

Aplicación general como cable de energía. En redes eléctricas de distribución de baja tensión, instalaciones industriales, en edificios y estaciones de maniobra. En instalaciones fijas, en ambientes interiores y exteriores (en bandejas, canaletas, engrapadas, etc.). Se puede instalar en ductos

Descripción

Uno, dos, tres o cuatro conductores de cobre electrolítico recocido, sólido, cableado (comprimido, compactado o sectorial) o flexible. Aislamiento de polietileno reticulado (XLPE), relleno de PVC y cubierta externa de PVC.

Características

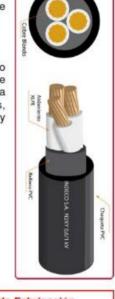
Buenas propiedades eléctricas y mecánicas. El aislamiento de polietileno reticulado permite mayor capacidad de corriente en cualquier condición de operación, mínimas pérdidas dieléctricas, alta resistencia de aislamiento. La cubierta exterior de PVC le otorga una adecuada resistencia a los ácidos, grasas, aceites y a la abrasión. Facilita empalmes, derivaciones y terminaciones. Retardante a la llama.

Marca

INDECO S.A. N2XY 0.6/1 kV <Sección> <Año> <Metrado Secuencial>

Calibre

6 mm² - 500 mm²


Embalaje

En carretes de madera, en longitudes requeridas.

Colores

Aislamiento 1: Blanco, Negro, Rojo y Amarillo.

Cubierta exterior: Negro.

Normas de Fabricación NTP-IEC 60502-1 Tensión de servicio 0.6/1 kV

Temperatura de operación 90º C

TABLA DE DATOS TECNICOS N2XY UNIPOLAR

CALTERE		ESPESO	RES	DIAMETRO	2550	CAPACIDAD D	E CORRIE	NTE (*)
CALIBRE	Nº HILOS	AISLAMIENTO	CUBIERTA	EXTERIOR	PESO	ENTERRADO	AIRE	DUCTO
N° x mm²		mm	mm	mm	(Kg/Km)	Α	Α	Α
1 x 10	7	0.7	1.4	7.9	144	115	90	95
1 x 16	7	0.7	1.4	9.0	204	155	125	125
1 x 25	7	0.9	1.4	10.6	309	200	160	160
1 x 35	7	0.9	1.4	11.7	406	240	200	195
1 x 50	19	1	1.4	13.1	529	280	240	230
1 x 70	19	1.1	1.4	14.9	738	345	305	275
1 x 95	19	1.1	1.5	16.9	1003	415	375	330
1 x 120	37	1.2	1.5	18.6	1246	470	435	380
1 x 150	37	1.4	1.6	20.7	1533	520	510	410
1 x 185	37	1.6	1.7	23.1	1919	590	575	450
1 x 240	37	1.7	1.8	25.9	2492	690	690	525
1 x 400	61	2	2	31.9	3143	895	955	680
1 x 500	61	2.2	2.1	35.5	5003	1010	1100	700

Anexo 09: CABLE INDECO- NA2XSA2Y-S

NA2XSA2Y-S 6/10 kV; Resist. UV

Contacto

Ventas Local ventas.peru@nexans.com exportaciones.peru@nexans.com

Distribución aérea de energía en media tensión.

DESCRIPCIÓN

Aplicación

Distribucion aérea de energia en media tension. Alimentadores de transformadores, centrales electricas, instalaciones industriales y de maniobra, en lugares en los cuales no se pueda ejecutar el tendido de redes subterraneas, instalaciones mineras, zonas urbanas arboladas o con poco espacio.

Construcción

- 1. Conductor: Aluminio compactado 1350, clase 2.
- 2. Semi-conductor interno: Compuesto extruido.
- 3. Aislamiento: Polietileno reticulado XLPE-TR (Tree retardant).
- 4. Semi-conductor externo: Compuesto extruido pelable.

Estos tres ultimos componentes extruidos en CV (vulcanizacion continua) de triple extrusion.

- 5. Pantalla individual: Cintas de aluminio.
- 6. Cubierta externa individual: Polietileno lineal de baja densidad LLDPE-UV.
- 7. Cable mensajero: Cable de acero galvanizado con cubierta LLDPE-UV.

Principales características

Excelentes propiedades contra el envejecimiento por calor. Resistencia a la abrasión, humedad y a los rayos solares. Buena resistencia a la traccion. La cubierta exterior tiene las siguientes características: baja emision de humos densos y libre de halogenos. No propaga la llama.

Sección:

Desde 25 mm2 hasta 120 mm2.

Marcación:

INDECO S.A. NA2XSA2Y-S 6/10 kV - Nro. fases x 1 x Sección - Año - Metrado secuencial.

Embalaje:

En carretes de madera no retornables.

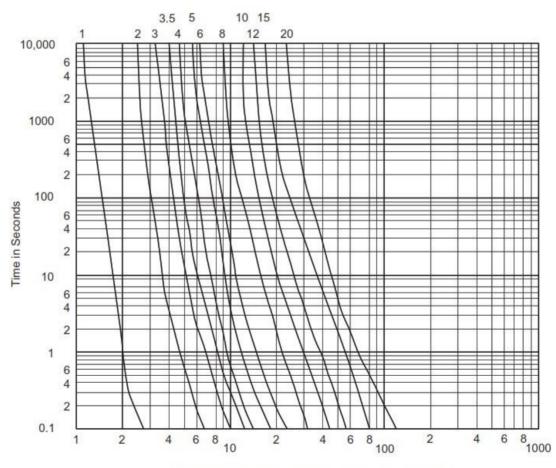
Color:

NORMA

Internacional IEC 60228; IEC 60332-1-2; IEC 60502-2; IEC 60684-2; IEC 60754-1; IEC 60754-2; IEC 61034-2

Nacional ICEA S-93-639; NTP-IEC 60228; NTP-IEC 60502-2; UL 2556

DATOS MECÁNICOS Y ELÉCTRICOS


Nro.Fases	Sección [mm²]	Diam. Cab. Mensajer o [mm]	Carga de rotura minima [kN]	Max. DC Resist. Cond. 20°C [Ohm/km]	Resist. Conduct. CA 90° C - form. triang. [Ohm/km]	React. Induct. 60 Hz - formac. triang. [Ohm/km]	Ampac. aire 30°C - formac triang. [A]
3	25	7,9	49,82	1,2	1,5386	0,1532	127
3	35	7,9	49,82	0,868	1,113	0,1463	154
3	50	7,9	49,82	0,641	0,8221	0,1388	184
3	120	7,9	49,82	0,253	0,3252	0,1206	324

Anexo 10: FUSIBLE FOTOVOLTAICO 1000 Vd,1-20^a

Specifications:

	Catalo	g numbers / co	nfigurations							
		PCB	fixing		Current	\/-I4	Energy integ	grals l²t (A²s)	Watts I	oss (W)
Cylindrical ferrule	Bolt fixing	Single pin	Double pin	In-line with crimp terminal	rating (amps)	Voltage rating (Vdc)	Pre-arcing	Total @ 1000 V	0.81,	I,
PV-1A10F	PV-1A10-T	PV-1A10-1P	PV-1A10-2P	PV-1A10F-CT	1	1000	0.15	0.4	0.8	1.5
PV-2A10F	PV-2A10-T	PV-2A10-1P	PV-2A10-2P	PV-2A10F-CT	2	1000	1.2	3.4	0.6	1.0
PV-3A10F	PV-3A10-T	PV-3A10-1P	PV-3A10-2P	PV-3A10F-CT	3	1000	4	11	0.8	1.3
PV-3-5A10F	PV-3-5A10-T	PV-3-5A10-1P	PV-3-5A10-2P	PV-3-5A10F-CT	3.5	1000	6.6	18	0.9	1.4
PV-4A10F	PV-4A10-T	PV-4A10-1P	PV-4A10-2P	PV-4A10F-CT	4	1000	9.5	26	1.0	1.5
PV-5A10F	PV-5A10-T	PV-5A10-1P	PV-5A10-2P	PV-5A10F-CT	5	1000	19	50	1.0	1.6
PV-6A10F	PV-6A10-T	PV-6A10-1P	PV-6A10-2P	PV-6A10F-CT	6	1000	30	90	1.1	1.8
PV-8A10F	PV-8A10-T	PV-8A10-1P	PV-8A10-2P	PV-8A10F-CT	8	1000	3	32	1.2	2.1
PV-10A10F	PV-10A10-T	PV-10A10-1P	PV-10A10-2P	PV-10A10F-CT	10	1000	7	70	1.2	2.3
PV-12A10F	PV-12A10-T	PV-12A10-1P	PV-12A10-2P	PV-12A10F-CT	12	1000	12	120	1.5	2.7
PV-15A10F	PV-15A10-T	PV-15A10-1P	PV-15A10-2P	PV-15A10F-CT	15	1000	22	220	1.7	2.9
PV-20A10F	PV-20A10-T	PV-20A10-1P	PV-20A10-2P	PV-20A10F-CT	20	1000	34	350	2.1	3.6

Time-current characteristics

Available Current, DC - Time Constant < 1ms (Amps)

Anexo 11: PROTECCIÓN CONTRA SOBRETENSIONES PSM40PV

PSM 40 PV

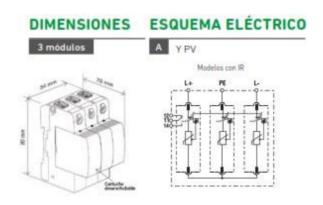
PSM 40 PV es la gama de dispositivos Tipo 2/Clase II para proteger contra sobretensiones transitorias inducidas (8/20 µs) para instalaciones fotovoltaicas, según normas EN 50539-11 e IEC 61643-31. Producto certificado UL 1449 4th Ed.

Cirprotec utiliza el sistema de desconexión dinámica térmica optimizado para tensiones en DC con alto poder de corte. De esta forma no se requiere instalar un fusible previo de back up para interrumpir las corrientes de cortocircuito típicas de cualquier instalación fotovoltaica.

Estos dispositivos de protección contra sobretensiones son adecuados para todas las aplicaciones fotovoltaicas: plantas y huertas solares, cubiertas y autoconsumo (off-grid).

ESPECIFICACIÓN Y CARACTERÍSTICAS

- Corriente máxima de descarga (8/20 µs): 40 kA
- Corriente nominal de descarga (8/20 μs): 20 kA
- Ucpv: 65, 80, 660, 1060 Vdc y 1500 Vdc
- Iscpv: 10 kA (EN 50539-11), sin necesidad de fusible previo
- SCCR: 50 kA, 100 kA (UL 1449 4th Ed)
- · Formato desenchufable carril DIN
- · Indicación remota y visual del estado de vida del protector
- Chasis reversible para permitir la entrada de cables desde arriba o abajo
- Cartuchos codificados mecánicamente para evitar errores de sustitución


Vea et video en www.youtube.com/cptcirprotec

REFERENCIAS

		Confi	guración							Cartucho
	REFERENCIA		Esquema eléctrico	Ucpv [Vdc]	Iscpv [KA]	tmax (8/20) [kA]	In (8/20) [kA]	Up@in (8/20) [kV]		
77707850	PSM3-40/600 PV	°Y" PV	A	660	10	40	20	s2,6		C40
77707851	PSM3-40/600 PV IR	"Y" PV	A	660	10	40	20	≤2.6	1	C40
77707852	PSM3-40/1000 PV	"Y" PV	A	1060	10	40	20	±4		C41
77707853	PSM3-40/1000 PV IR	°Y" PV	A	1060	10	40	20	54	4	C41
77707840	PSM3-40/1500 PV	"Y" PV	A	1500	10	40	15	s5		€42
77707841	PSM3-40/1500 PV IR	°Y" PV	A	1500	10	40	15	≤5	1	C42

Observación: ver también la página 27 «2 polos» para aplicaciones de CC de autoconsumo «off-grid» (muy baja tensión). Consúltenos para otras tensiones.

Anexo 12: INTERRUPTOR SERIE NSX DC PV SCHNEIDER ELECTRIC

Compact NSX D	C PV circuit I	breaker		NSX80	NSX125	NSX160	NSX200	NSX250
				TM DC PV	TM DC PV	TM DC PV	TM DC PV	TM DC P
Number of poles				4	4	4	4	4
Electrical characteri	stics as per IEC	60947-2 and EN 60947-2						•
Rated current (A) (free air + no venting)	In	40 °C heatsink standard-IP4X		80	125	160	200	250
Altitude	m	2000		•	•	•	•	•
Rated insulation voltage (V)	Ui			1000	1000	(1000)	1000	1000
Rated impulse withstand voltage (kV)	Uimp			8	8	8	8	8
Rated operational voltage (V)	Ue	DC		1000	1000	1000	1000	1000
Type of circuit breaker	r.							
Ultimate breaking capacity (L/R 2 ms)	Icu (kA ms)	DC	1000 V (4P series)	10 ^[1]	10 19	10 19	10 19	10 🖽
Service breaking capacity	Ics	% Icu		50 %	50 %	50 %	50 %	100 %
Suitability for isolation				•	•	•	•	•
Selectivity category (Utilisation	n category)			A	A	A	A	A
Pollution degree				3	3	3	3	3
Durability								
Endurance (C-O cycles)	mechanical electrical (In)	1000 V		10000	10000 1500	10000	10000	5000 1000
Protection								
Overload/short-circuit protectio	n thermal magnetic			•	•	•	•	•
Installation and conne	ections							
Control	manual	toggle		•	•	•	•	•
	motor mechanism				•		•	0
Connections	fixed	front connection		•	•	•	•	•
		long rear connection		•	•	•	•	•
	plug-in	front connection		-	-	-	-	-
	(on base)	rear connection		-	-	-	-	-
	withdrawable	front connection		-	-	-	-	-
	(on chassis)	rear connection		-	-	-	-	-
Additional measureme								
Indication contacts	OF	auxiliary contact		•	•	•	•	•
	SD, SDE	trip, fault-trip		•	•	•	•	•
Voltage releases	MX, MN	shunt trip/undervoltage release		•	•	•	•	•

Anexo 13: FUSIBLE gPV NH 1000V

PHOTOVOLTAIC

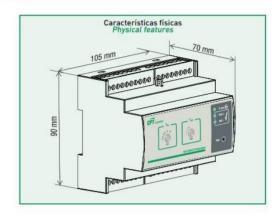
NH gPV fuse links for photovoltaic installations from DF Electric have been developed to offer a safety protection solution in sub-array, array or inverter DC imput of photovoltaic installations.

They provide protection against overloads as well as short-circuits (gPV class according to IEC 60269 and UL248-19 Standards, with a minimum fusing current of 1,35 in. Made with ceramic body with high withstand to internal pressure and thermal shock. Contacts are made in silver plated copper or brass and melting elements are made in pure silver in order to avoid the aging and thus keep unafterable the electric characteristics.

For these fuse-links we recommend the utilization of 1000 VDC NH ST fuse bases.

U	1000V DC
BREAKING CAPACITY	30KA
STANDARDS	(4)

In (A)	REFERENCE	PACKING Uni /BOX
25	373210 ®	1/30
32	373215 ®	1/30
40	373225 ®	1/30
50	373230 ®	1/30
63	373235 🕦	1/30
80	373240 🗓	1/30
100	373245 (4)	1/30
125	373250 (4)	1/30
160	373255	1/30
200	373260	1/30


Anexo 14: VIGILANTE ISO-CHECK PV CPT

Serie ISO-Check PV

Vigilante de aislamiento para instalaciones fotovoltaicas Insulation monitoring device for photovoltaic systems

Características técnicas Technical features

Modelos/Models Códigos/Codes	4.72	ISO-Check PV 600 77706704	ISO-Check PV 1000 77706703	
Tensión de alimentación auxiliar AC 50/60 Hz Supply voltage AC 50/60 Hz	U _s [V]	23	0	
Consumo propio Power consumption	VA	2		
Tensión nominal del sistema Nominal system voltage	U, [VDC]	300600	5001000	
Valor de respuesta Response value	$R_{an}[k\Omega]$	30,40,50,	50,70,80	
Tiempo de respuesta (RLY1) Response time (RLY1)	t _{RLY1} [ms]	<1s (C₀≤	22,5 μF)	
Tiempo de respuesta (RLY2) Response time (RLY2)	t _{RLY2} [s]	1,2,5	,10	
Desviación de respuesta Relative uncertainty	%	5 (450V <us≤600v) 15 (300V<us≤450v)< td=""><td>5 (750V<us≤1000v) 15 (500V<us≤750v)< td=""></us≤750v)<></us≤1000v) </td></us≤450v)<></us≤600v) 	5 (750V <us≤1000v) 15 (500V<us≤750v)< td=""></us≤750v)<></us≤1000v) 	
Histéresis (para U _n =1000 Vdc) Hysteresis (at U _n =1000 Vdc)	%	15 (R _{an} =5 10 (R _{an} =8		
Tiempo de rearme Reclosing time	t _r [min]	1		
Tensión de medida (valor de pico)(RF= $\infty\Omega$) Measuring voltage (peak value)(RF= $\infty\Omega$)	U _m [V]	<2	5	
Corriente de medida (RF=0 Ω) Measuring current (RF=0 Ω)	I _m [mA]	<1	5	
Resistencia interna CC Internal DC resistance	R _i [kΩ]	51	2	
Impedancia interna (a 50 Hz) Internal impedance (at 50 Hz)	$Z_i[k\Omega]$	51:	2	
Tensión continua admisible Permissible DC voltage	U _{tg} [V]	115	0	
Capacidad tolerada de derivación de la red System leakage capacitance	C _o [uF]	≤22	2,5	
Tensión impulsional soportada/Categoría Rated impulse voltage/Category	U _{imp} [kV]	4/111		

Anexo 15: INTERRUPTORES SERIE NSX DC PV SCHNEIDER ELECTRIC

Switch-disconnectors characteristics Compact NSX630b NA DC PV to NSX1600 NA DC PV

Compact NSX1600 NA DC PV

Compact NSX Do	C PV switch-discon	nector	NSX630b NA	NSX800b NA	NSX1000 NA	NSX1250 NA	NSX1600 N
			DC PV	DC PV	DC PV	DC PV	DC PV
Number of poles			4	4	4	4	4
Electrical characteris	stics as per IEC 60947-3						
Rated current (A) (free air + no venting)	In	40 °C	630 heatsink - IP2X	800 heatsink - IP2X	1000 heatsink - IP2X	1250 heatsink - IP2X	1500 heatsink - IP0
Altitude	m	2000	•	•	•	•	•
Rated insulation voltage (V)	Ui		1000 [1]	1000 [1]	1000 [1]	1000 [1]	1000 [1]
Rated impulse withstand voltage (kV)	Uimp		8	8	8	8	8
Rated operational voltage (V)	Ue	DC	1000	1000	1000	1000	1000
Type of circuit breaker							
Rated short circuit withstand current (kA rms)	lcw/lcm	t = 1 s	20	20	20	20	20
Rated conditionnal short-circuit current		kA	10	10	10	10	10
	with back-up fuse	AgPV	N/A	N/A	N/A	N/A	N/A
Rated conditionnal short-circuit current	Iq with circuit breaker		10	10	10	10	10
Utilization category			DC22-A	DC22-A	DC22-A	DC22-B	DC22-B
Suitability for isolation			•	•	•	•	•
Pollution degree			3	3	3	3	3
Durability							
Endurance (C-O cycles)	mechanical		10000	10000	10000	10000	10000
	electrical (In)	1000 V	1000	500	500	100	100
Installation and connec	ctions						
Control	manual		•	•	•	•	•
	motor mechanism		•	•	•	•	•
Connections	fixed	front connection	•	•	•	•	•
		rear connection	•	•	•	•	•
Additional measureme	nt, indication and control a	auxiliaries					
Indication contacts	OF .	auxiliary contact	·	•	•	•	•
Voltage releases	MX, MN	shunt trip/undervoltage release	<u></u>	•	•	•	
Installation				1-		1-	1 -
Accessories	terminal extensions		•	•	0	•	•
	escutcheons		0	•	•	•	•
	terminal shields and interphase ban	riers	•	•	0	0	•
Dimensions and weigh	t		10		1-	1	
Dimensions (mm) W x H x D (w/			4P 280 x 327 x 182	280 x 327 x 182	280 x 327x 182	280 x 327 x 182	280 x 327 x 182
Weight (kg) (w/o series connect	tion)		4P 18	18	18	18	18

Anexo 16: PROTECCIÓN CONTRA SOBRETENSIÓN

Protectores Tipo 2

PSM 40

PSM 40 es la gama de dispositivos Tipo 2/Clase II para proteger contra sobretensiones transitorias inducidas (8/20 µs), según norma IEC/EN 61643-11.

Adecuados como segundo escalón de protección en cuadros de distribución cuando existen protectores tipo 1 instalados aguas arriba, o como primer escalón de protección en instalaciones comerciales, viviendas u otras aplicaciones que no estén expuestas a descargas directas, ni provistas de sistemas de protección externa contra el rayo.

ESPECIFICACIÓN Y CARACTERÍSTICAS

- Corriente máxima de descarga (8/20 µs): 40 kA por fase
- Corriente nominal de descarga (8/20 µs): 20 kA por fase
- · Redes TNS, TNC, TT y IT
- Un(L-N/L-L): 48 V, 60 V, 120/208 V, 230/400 V, 277/480 V, 400/690 V y superiores
- · Formato desenchufable para carril DIN
- Indicación remota y visual del estado de vida del protector
- Chasis reversible para permitir la entrada de cables desde arriba o abajo
- Cartuchos codificados mecánicamente para evitar errores de sustitución
- Modelos certificados UL 1449 4 th Ed.

Protectores Tipo 2 | PSM 40

polos		Configu	uración							Cart	ucho
	REFERENCIA		Esquema electrico	Un [V]		lmax (8/20) [kA]	In (8/20) [kA]	Up@in (8/20) [kV]			
77707864	PSM3-40/230 TNC	TNC (3Ph)	Н	-/208	150	40	20	s1		C22	
77707865	PSM3-40/230 TNC IR	TNC (3Ph)	H	-/208	150	40	20	51	1	C22	12
77707866	PSM3-40/400 TNC	TNC (3Ph)	H	-/400	275	40	20	≤1,3		C23	-
77707867	PSM3-40/400 TNC IR	TNC (3Ph)	В	-/400	275	40	20	≤1,3	1	C23	3
77707882	PSM3-40/480 TNC	TNC (3Ph)	i Ha	-/480	320	40	20	≤1,5		G24	12
77707883	PSM3-40/480 TNC IR	TNC (3Ph)	H	-/480	320	40	20	≤1,5	1	C24	3
77707870	PSM3-30/750 TNC	TNC (3Ph)	Н	-/690; -/1000	750	30	15	±3		C26	3
77707871	PSM3-30/750 TNC IR	TNC (3Ph)	н	-/690; -/1000	750	30	15	s3	J	C26	

Anexo 17: VIGILANTE DE AISLAMIENTO AC(IT)

CARACTERÍSTICAS TÉCNICAS

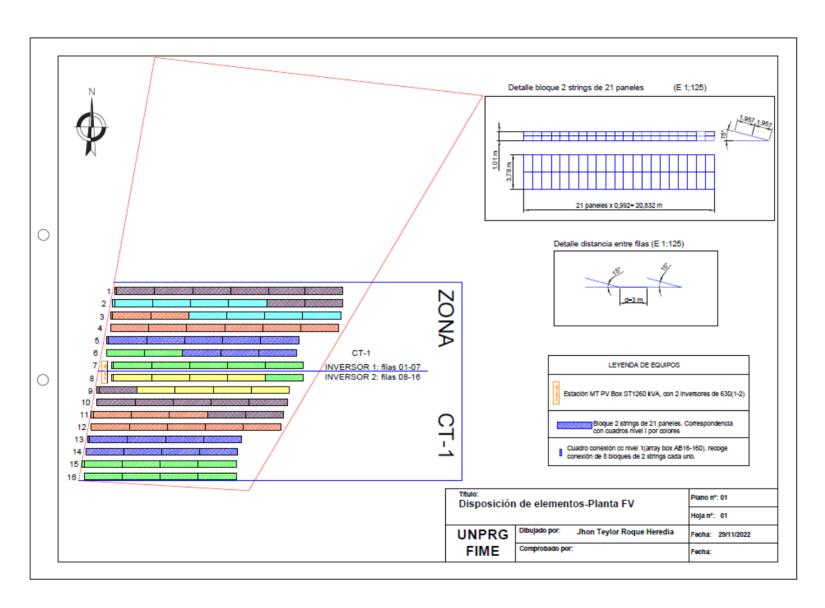
Referencia		150-Check 120	150-Check 230		
Código	77706701	77706700			
Alimer	tación	le .			
Tensión de alimentación	Us	120 V AC ± 15%	230 V AC ± 15%		
Frecuencia		50/6	0 Hz		
Sistema	vigila	do			
Tensión nominal	Un	440	V AC		
Características de moni	torizac	ión de resistenc	ia		
Umbral de actuación alarma	Ra	50-30	00 kΩ		
Precisión		± 10%			
Circuito d	e med	ida			
Tensión de medida		64	ΟV		
Corriente de medida (con Rf=0Ω)		€ 200) mA		
Resistencia interna	Ri	≯ 100	kΩ		
Impedancia interna	Zi	> 100 kΩ			
Capacidad tolerada de derivación de red	Ce	< 20 μF			
Elemento de	conmu	utación			
Contacto de salida		AC-13;6	A / 250 V		
Otras cara	cteris	ticas			
Norma de producto		EN 61	557-8		
Compatibilidad electromagnética		UNE-EN-65143+A1:2004			

Anexo 18: CIRCUIT BREAKER COMPACT NS1250N

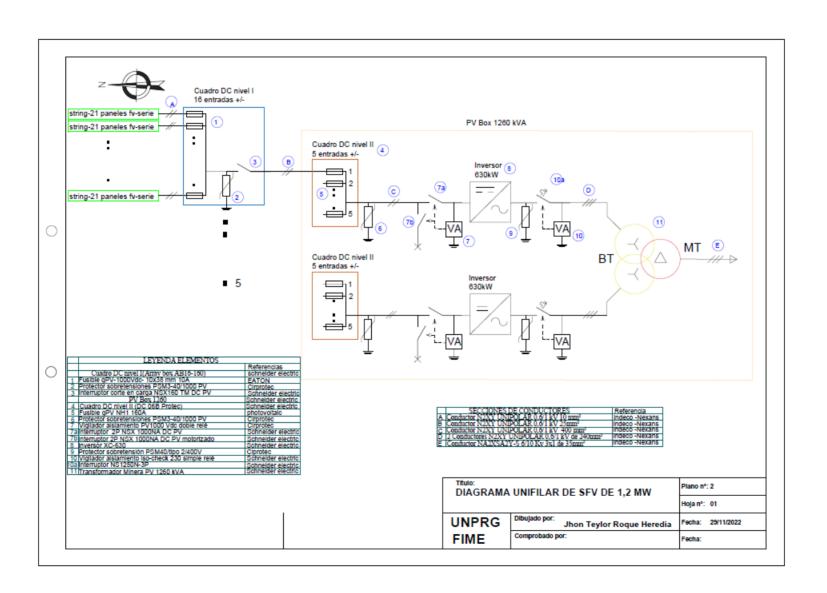
Principal

mitospan	
Gama	Compact
Gama de producto	NS630b1600
Tipo de producto o componente	Interruptor automático
Nombre corto del dispositivo	Compact NS1250N
Aplicación del dispositivo	Distribución
Número de polos	3P
Descripción de polos protegidos	3t
Tipo de red	CA
Código de poder de corte	N
Apto para seccionamiento	Si acorde a IEC 60947-2
Categoría de empleo	Category B
Unidad de control	Micrologic 2.0
Tecnología de unidad de disparo	Electrónico
Calibre de la unidad de disparo	1250 A en 50 °C
PRESENTE PROCESSOR AND A STORY OF THE STORY OF THE STORY	Pro- Sub- Proposition of the Company of the Company

Complementario


Frecuencia de red	50/60 Hz
Tipo de control	Mando rotativo Maneta
Tipo de montaje	Fijo
Tipo de montaje	Placa posterior
Conexión superior	Frontal
Conexión hacia abajo	Parte frontal
(In) rated current up to 65 °C	1250 A en 50 °C
[Ui] tensión asignada de aislamiento	800 V CA 50/60 Hz acorde a IEC 60947-2
[Uimp] Tensión asignada de resistencia a los choques	8 kV acorde a IEC 60947-2
[Ue] tensión asignada de empleo	690 V CA 50/60 Hz acorde a IEC 60947-2

Anexo 19: SERIE DE CONTENEDORES PV Box ST


PV Box ST			
Device short name	PV Box ST 1080	PV Box ST 1260	PV Box ST 1360
Electrical specifications			
DCinput			
Voltage range, MPPT	440 - 885 V (at PF=1)	510 - 885 V (at PF=1)	550 - 885 V (at PF=1)
Max. Input voltage, open circuit	1000 V	1000 V	1000 V
Max. DC current	2 x 1280 A	2 x 1280 A	2 x 1280 A
ACoutput			
Nominal power	1080 kVA	1260 kVA	1360 kVA
Nominal voltage	up to 36 kV	up to 36 kV	up to 36 kV
Frequency	50/60 Hz	50/60 Hz	50/60 Hz
Power factor range (PQ dispatch)	0 to 1 leading and lagging	0 to 1 leading and lagging	0 to 1 leading and lagging
Equipment			
Inverters	2 x XC 540	2 x XC 630	2 x XC 680
DC connection	2 x DC Box 6 input or 2 x DC	C Box 10 input (+/-)	
DC fuse range ⁽¹⁾		0 A / DC Box 10: 160 A, 200 A, 2	50 A
Transformer type	Schneider Electric Minera oil		0071
Transformer losses			gulation(depending on geographies)
Medium voltage switchgear U< 24 kV		main unit type NE-DI with Sepam	
Medium voltage switchgear 24 kV ≤ U ≤ 36 kV		ig main unit type CB-C with Separi	
Optional content	Schlister Electric Fleder Chin	g man anit type on o with copa	ii io protocuori rolay
Automatic progressive reconnection ⁽ⁿ⁾	MV circuit breaker motorization	on, configurable timer	
Auxiliary nominal power transformer	10 kVA / 400 V	ori, corrigarable timer	
	DC Box monitored		
DC input measurement		Co-Florida Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-C	
Monitoring and control	and the second state of the first term of the second state of the	er Electric) monitoring cabinet wit	namati nas Saston, nassalant versa talbala arrat ha farance na nasana na na
Safety kit		IV rod and gloves, insulating stool	
Service kit		e detector (available with Conext	
Service contract	Worldwide service team - co	nsult your sales representative for	service offer
External operating conditions			
Temperature			
Standard temperature range	-10°C / +45°C		
Other temperature ranges	Desert / Tropical (-10°C / +50	0°C)	
Pollution			
Standard low polluted environment	G4 filters		
(Rural and suburban environment)			
Option polluted environment (desert, urban)(3)	Internal Filter Box (G4 and F9	filters, fans, speed drives)	
Other conditions			
Max. relative humidity	100%		
Max. altitude above sea level ⁴	2000 m		
Max. wind speed	180 km / h		
Max. snow load	250 kg / m ²		
IP grade LV / MV compartment	IP54		
IP grade transformer compartment	IP23		
General specifications			
Dimensions and weight			
During transportation (H x W x D)	2.90 x 2.44 x 12.19 m		
Assembled on site (H x W x D)	2.90 x 3.38 (or 3.28°) x 12.1	9 m	
Weight approx. with standard content	19 tons		
Material			
Basement	Light basement to be done of	on site	
Walls and roof	Standard 40" container with		
Cooling		THE TOTAL PROPERTY OF THE PARTY	
LV and MV switchboard compartment ^{ro}	Ensured by inverter fans		
Transformer compartment	Natural		
Regulatory approval	- Contraction Cont		
Electrical standards	IEC 62271-202, IEC 61439,	EC 62271-200 JEC 60076	
Type-test certification	IEC 62271-202, IEC 61439,	1200, 120 00070	
Internal arc classification (acc. to IEC 62271-202)			
General ventilation filters standard	EN779:2012		
Building standards	Eurocodes		
Dunung Standards	Lurucoues		

Anexo 20: TOPOLOGÍA DE LA PLANTA FOTOVOLTAICA 1,2 MW

Anexo 21: DIAGRAMA UNIFILAR DE LA PLANTA FOTOVOLTAICA DE 1,2 MW

Anexo 22: COSTOS UNITARIOS

ANÀLISIS ECONÒMICO

PROYECTO: ANÁLISIS DE LA GENERACIÓN DISTRIBUIDA EN UN ALIMENTADOR DEL SISTEMA ELÉCTRICO DE CHICLAYO PARA DETERMINAR LOS EFECTOS TÉCNICOS EN LA RED.

BLOQUE: AMBIENTES EXTERIORES

CODIGO	DESCRIPCIÓN DEL PRODUCTO	UND.	CANT.	PRECIO S/	PARCIAL S/	
	EQUIPOS					
AGD0001	Panel Fotovoltaico Peimar 360W 38V	und	3360	680	2284800	
AGD0002	Estructura Elevada ELV 2x7 3M	und	240	8,471.14	2033073.6	
AGD0003	Conductor N2XY Unipolar 0,6/1kV 10mm2	m	5060	2.02	10221.2	
AGD0004	Cable Solar 12AWG DC/AC-1/0.6 Kv	m	3400	10.1	34340	
AGD0005	Multi-Contact MC4 Female Connector	und	16	7	112	
AGD0006	Multi-Contact MC4 Male Connector	und	16	7	112	
AGD0007	Fusible Gpv-1000Vdc-10x38mm 10A	und	320	38.1	12192	
AGD0008	Protector Sobretensiones PSM3-40/100PV	und	10	187	1870	
AGD0009	Interruptor Corte en Carga NSX160 TM DC PV	und	10	1,616.16	16161.6	
AGD0010	Cuadro DC nivel I(Array Box AB16-160)	und	10	846.72	8467.2	
AGD0011	Bandejas de rejillas 60x 300 mm	m	950	35.65	33867.5	
					4435217.1	
	MANO DE OBRA (8 h x 30d)					
AGD0010	Ingeniero Supervisor	hh	2	3,000.00	6000	
AGD0011	Ingeniero de Seguridad	hh	2	3,000.00	6000	
AGD0012	Técnico Electricista	hh	3	2,400.00	7200	
AGD0013	Ayudante	hh	3	2,100.00	6300	
AGD0014	Otros	hh	1	1,000.00	1000	
AGD0015	Herramientas Varios	%МО	5%	26,500.00	1325	
					27825	
	TRANSPORTES					
	Transportes	%SUM	2%	4,435,217.10	88704.342	
					88704.342	
	TOTAL				4551746.442	

ANÀLISIS ECONÒMICO

PROYECTO: ANÁLISIS DE LA GENERACIÓN DISTRIBUIDA EN UN ALIMENTADOR DEL SISTEMA ELÉCTRICO DE CHICLAYO PARA DETERMINAR LOS EFECTOS TÉCNICOS EN LA RED.

BLOQUE: PLANTA

CODIGO	DESCRIPCIÓN DEL PRODUCTO	UND.	CANT.	PRECIO S	PARCIAL S/
	EQUIPOS				
AGD0016	PV Box 1260	und	1	15,337.50	15337.5
AGD0017	Cuadro DC nivel II (DC 06B Protec)	und	2	4,177.89	8355.78
AGD0018	Fusible Gpv NH1 160A	und	10	63	630
AGD0019	Protector sobretensiones PSM3-40/1000PV	und	2	55	110
AGD0020	Vigilador aislamiento PV1000 Vdc doble relé	und	2	574.88	1149.76
AGD0021	Interruptor 2P NSX 1000 NA DC PV	und	2	9,138.35	18276.7
AGD0022	Interruptor 2P NSX 1000 NA DC PV motorizado	und	2	10,138.35	20276.7
AGD0023	Inversor XC-630	und	2	106,174.14	212348.28
AGD0024	Protector sobretensiones PSM40/tipo2/400V	und	2	70	140
AGD0025	Vigilador aislamiento iso-check 230 simple relé	und	2	472.38	944.76
AGD0026	Interruptor NS1250N-3P	und	2	11,824.36	23648.72
AGD0027	Transformador Minera PV 1500KVA	und	1	100,956.41	100956.41
AGD0028	Conductor N2XY Unipolar 0,6/1kV 25mm2	m	5003	2.6	13007.8
AGD0029	Conductor N2XY Unipolar 0,6/1kV 400mm2	m	5	12.3	61.5
AGD0030	Conductor N2XY Unipolar 0,6/1kV 240mm2	m	5	15.2	76
AGD0031	Conductor NA2XSA2Y-S 6/10 kV 3x1 DE 35 mm2	m	2	22.2	44.4
AGD0032	Bandejas de rejillas 60x 100 mm	m	50	14.62	731
AGD0033	Pack de accesorios y otros	und	0.2	34,598.50	6919.7
					423015.01
	MANO DE OBRA (8 h x 30d)				
AGD0010	Ingeniero Supervisor	hh	0.8	3,000.00	2400
AGD0011	Ingeniero de Seguridad	hh	0.8	3,000.00	2400
AGD0012	Técnico Electricista	hh	1.6	2,400.00	3840
AGD0013	Ayudante	hh	1.6	2,100.00	3360
AGD0014	Otros	hh	1	1,000.00	1000
AGD0015	Herramientas Varios	%MO	5%	13,000.00	650
					13650
	TRANSPORTES				
	Transportes	%SUM	2%	423,015.01	8460.3002
					8460.3002
	TOTAL				445125.3102

ANÀLISIS ECONÒMICO

PROYECTO: ANÁLISIS DE LA GENERACIÓN DISTRIBUIDA EN EL ALIMENTADOR S2 PARA DETERMINAR LOS EFECTOS TÉCNICOS EN LA RED.

BLOQUE: AMBIENTE INTERIORES

CODIGO	DESCRIPCIÓN DEL PRODUCTO	UND.	CANT.	PRECIO S	PARCIAL S/
	ACTIVIDAD				
AGD0017	Apertura de zanja 30x30 cm para cimientos de estructuras	und	4000	3.16	12640
AGD0018	Apertura de zanja 30x80 cm para puestas a tierra en lateral	und	55	4.16	228.8
AGD0021	Excavación 370x40 cm para vial y acera en lateral de parcela	und	35	30.82	1078.7
AGD0023	Hormigón HA-25 para zunchos y cimentaciones	und	400	148.55	59420
AGD0024	Firme rígido para tráfico pesado T42 sobre explanada E3, compuesto de capa de 20 cm de espesor de HF-3,5.	und	500	57.19	28595
AGD0025	Solado de loseta de hormigón para uso exterior	und	36	34.17	1230.12
					103192.62
	MANO DE OBRA (8 h x 30d)				
AGD0010	Ingeniero Supervisor	hh	1	3,000.00	3000
AGD0011	Ingeniero de Seguridad	hh	1	3,000.00	3000
AGD0012	Técnico Electricista	hh	2	2,400.00	4800
AGD0013	Ayudante	hh	2	2,100.00	4200
AGD0014	Otros	hh	1	1,000.00	1000
AGD0015	Herramientas Varios	%MO	5%	16,000.00	800
					16800
	TRANSPORTES				
	Transportes	%SUM	2%	103,192.62	2063.8524
					2063.8524
	TOTAL				122056.4724

163

RESUMEN DEL PRESUPUESTO BASE PLANTA FOTOVOLTAICA DE 1,2 MW-ALIMNETADOR S2

Departamento : LORETO
Provincia : IQUITOS

ITEM	DESCRIPCIÓN	AMBIENTES EXTERIORES	PLANTA	AMBIENTE INTERIORES	TOTAL (S/.)
Α	SUMINISTRO DE MATERIALES	4,435,217.10	423,015.01	103,192.62	4,961,424.73
В	MONTAJE ELECTROMECÁNICO	27,825.00	13,650.00	16,800.00	58,275.00
С	TRANSPORTES	88,704.34	8,460.30	2,063.85	99,228.49
	COSTO DIRECTO (A+B+C)	4,551,746.44	445,125.31	122,056.47	5,118,928.22
	GASTOS GENERALES y UTILIDADES	682,761.97	66,768.80	18,308.47	767,839.23
	TOTAL	5,234,508.41	511,894.11	140,364.94	5,886,767.46

PROFORMA

Para nosotros es un gusto saludarle y, mediante la presente, dar respuesta a la solicitud de cotización que recibimos de su parte el pasado 18/10/2022. A continuación, le proporcionamos la información que nos ha solicitado.

CODIGO	DESCRIPCION DEL PRODUCTO	UND.	CANT.	PRECIO S/	PARCIAL S/
	EQUIPOS				
AGD0001	Panel Fotovoltaico Peimar 360W 38V	und	3360	S/.680.00	S/.2,284,800.00
AGD0002	Estructura Elevada ELV 2x7 3M	und	240	S/.8,471,14	S/.2,033,073.60
AGD0003	Conductor N2XY Unipolar 0,6/1kV 10mm2	m 🦸	5060	S/.2.02	S/.10,221.20
AGD0004	Cable Solar 12AW G DC/AC-1/0.6 Kv	m	3400	S/.10,10	\$/.34,340.00
AGD0005	Multi-Contact MC4 Female Connector	und	16	\$/.7.00	S/.112.00
AGD0006	Multi-Contact MC4 Male Connector	und	16	\$/.7.00	S/.112.00
AGD0007	Fusible Gpv-1000Vdc-10x38mm 10A	und	320	\$/.38,10	S/.12,192.00
AGD0008	Protector Sobretensiones PSM3-40/100PV	und	10	S/.187.00	\$/.1,870.00
AGD0009	Interruptor Corte en Carga NSX160 TM DC PV	und	10	S/.1,616.16	S/.16,161.60
AGD0010	Cuadro DC nivel I(Array Box AB16-160)	und	10	S/.846.72	\$/.8,467.20
AGD0011	Bandejas de rejillas 60x 300 mm	m	950	S/.35.65	\$/.33,867.50
					\$7.4,435,217.10

Cuatro millones cuatrocientos treinta y cinco mil doscientos diecisiete con 10/100 soles.

El precio incluye IGV.

Además, queremos informarle que los precios, cantidades, marcas, tamaños y colores que hemos mencionado anteriormente son válidos hasta el (31.11.2022) de validez de la cotización).

Sin nada más que agregar, queremos expresarle nuestro agradecimiento por interesarse en nuestro productos y servicios. Esperamos que pronto contacte con nosotros para concretar su compra.

Gerente Comercial AutoSolar

Atentamente,

https://autosolar.pe/kits-solares-fotovoltaicos?utm

Anexo 23: FLUJO DE CAJA

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
INVERSIÓN/EGRESOS																					
Planta fotovoltaica	-5,886,767.46																				
Reposición											-212348										
Mantenimiento		-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868	-58868
Sub total	-5,886,767.46	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-271,215.95	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67	-58,867.67
INGRESOS																					
Bonos de Carbono		123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16	123513.16
Producción de Energía		949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6	949233.6
Sub total		1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76	1072746.76
FUJO DE CAJA	-5,886,767.46	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	801,530.81	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09	1,013,879.09
VAN	1,617,974.7																				
TIR	16%																				

UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

DECANATO

ACTA DE SUSTENTACION VIRTUAL N°019-2023-FIME

En la ciudad de Lambayeque, siendo las 08:00 a.m. del día miércoles 31 de mayo de 2023. Se reunieron vía plataforma virtual htt://: meet.google.com/tzv-xycz-qyi, los miembros del jurado, designados mediante Resolución Nº123-2023-D-VIRTUAL-FIME, de fecha 29 de mayo de 2023, con la finalidad de Evaluar y Calificar la sustentación de la Tesis – modalidad ordinaria, conformado por los siguientes catedráticos:

Dr. Ing. AMADO AGUINAGA PAZ ING. HÉCTOR ANTONIO OLIDEN NÚÑEZ ING. NÉSTOR DANIEL PUYEN MATEO M.Sc. Ing. JONY VILLALOBOS CABRERA

PRESIDENTE **SECRETARIO MIEMBRO ASESOR**

Se recibió la Tesis- modalidad ordinaria titulada:

"ANALISIS DE LA GENERACION DISTRIBUIDA PARA MEJORAR LA CALIDAD DE ENERGIA ELECTRICA EN EL ALIMENTADOR S2 DE LA EMPRESA ELECTRO ORIENTE S.A. - IQUITOS"

Presentada y sustentada por su autor, Bachiller: ROQUE HEREDIA JHON TEYLOR

Finalizada la sustentación virtual de la Tesis - modalidad ordinaria, el sustentante respondió las preguntas y observaciones de los miembros del jurado examinador, quienes procedieron a deliberar y acordaron otorgar el calificativo de APROBADO, Nota (15) en la escala vigesimal, mención REGULAR.

Quedando el sustentante apto para obtener el Título profesional de Ingeniero Mecánico Electricista, de acuerdo a la Ley Universitaria 30220 y la normatividad vigente, de la Facultad de Ingeniería Mecánica y Eléctrica y la Universidad Nacional Pedro Ruiz Gallo.

Siendo las 09:00 a.m. del mismo día se da por concluido el acto académico, firmando la

presente acta el jurado respectivo:

ADO AGUINAGA PAZ PRESIDENTE

ING. NÉSTOR DANIEL PUYEN MATEO MIEMBRO

ING. HÉCTOR ANTONIO OLIDEN NUS SECRETARIO

M.Sc. ING. JONY VILLALOBOS CABRERA SESOR

Teléfono: 074 - 281122

ANEXO 01

CONSTANCIA DE VERIFICACIÓN DE ORIGINALIDAD

Yo, M.Sc. Ing. Villalobos Cabrera Jony, usuario revisor del documento titulado: "ANÁLISIS DE LA GENERACIÓN DISTRIBUIDA PARA MEJORAR LA CALIDAD DE ENERGÍA ELECTRICA EN EL ALIMENTADOR S2 DE LA EMPRESA ELECTRO ORIENTE S.A. – IQUITOS"

Cuyo autor es, Bach. Roque Heredia Jhon Teylor, identificado con documento de identidad N°48601688, declaro que la evaluación realizada por el Programa informático, ha arrojado un porcentaje de similitud de 19%, verificable en el Resumen de Reporte automatizado de similitudes que se acompaña.

El suscrito analizó dicho reporte y concluyó que cada una de las coincidencias detectadas dentro del porcentaje de similitud permitido no constituyen plagio y que el documento cumple con la integridad científica y con las normas para el uso de citas y referencias establecidas en los protocolos respectivos.

Se cumple con adjuntar el Recibo Digital a efectos de la trazabilidad respectiva del proceso.

Lambayeque 18 de 07 del 2023

M.Sc. Ing. Villalobos Cabrera, Jony

DNI: 16699530

ASESOR

Se adjunta:

*Resumen del Reporte automático de similitudes

*Recibo Digital

ANÁLISIS DE LA GENERACIÓN DISTRIBUIDA PARA MEJORAR LA CALIDAD DE ENERGÍA ELECTRICA EN EL ALIMENTADOR S2 DE LA EMPRESA ELECTRO ORIENTE S.A. – IQUITOS

		•	/ n
INFORME DE ORIGINALIDAD			Maria Nilla
10	10	1	Ms.c Jony Villalobos Cabre ASESOR
9 %	18%	%	1 %
INDICE DE SIMILITUD	FUENTES DE INTERNET	PUBLICACIONES	TRABAJOS DEL ESTUDIANTE
FUENTES PRIMARIAS			
repositor	io.uss.edu.pe		1
Fuente de Inter			4%
repositor	io.unprg.edu.p	۵	2
Fuente de Inter		_	2%
1library.c			1
Fuente de Inter			%
repositor	io.ucv.edu.pe		1
Fuente de Inter	•		l %
www.olad	de.org		1
Fuente de Inter			I %
hdl.handl	le.net		1
Fuente de Inter	net		I %
Submitte	d to Universida	d Cesar Vallei	0 1
7 Trabajo del estu			%
bibdigital	.epn.edu.ec		1
8 Fuente de Inter			%

Recibo digital

Este recibo confirma quesu trabajo ha sido recibido por Turnitin. A continuación podrá ver la información del recibo con respecto a su entrega.

La primera página de tus entregas se muestra abajo.

Autor de la entrega: Jhon Teylor Roque Heredia

Título del ejercicio: Tesis de Pregrado

Título de la entrega: ANÁLISIS DE LA GENERACIÓN DISTRIBUIDA PARA MEJORAR L...

Nombre del archivo: TESIS_FINAL_27.02.23.docx

Tamaño del archivo: 11.28M

Total páginas: 96

Total de palabras: 11,226 Total de caracteres: 60,571

Fecha de entrega: 28-feb.-2023 12:21a. m. (UTC-0500)

Identificador de la entre... 2025030692

Ms.c Jony Villalobos Cabrera