

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

TESIS

Para Optar el Título Profesional de:

INGENIERO MECÁNICO ELECTRICISTA

"DIMENSIONAMIENTO DE UN SISTEMA CON ENERGIAS RENOVABLES CONECTADO A LA RED PARA EL LABORATORIO DE COMPUTO – FIME DE LA UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO"

Autor:

Bach. JULIO CESAR RAMIREZ REQUEJO

Asesor:

Dr. DANIEL CARRANZA MONTENEGRO

LAMBAYEQUE - PERÚ 2021

TESIS

Para Optar el Título Profesional de: INGENIERO MECÁNICO ELECTRICISTA

"DIMENSIONAMIENTO DE UN SISTEMA CON ENERGIAS RENOVABLES CONECTADO A LA RED PARA EL LABORATORIO DE COMPUTO – FIME DE LA UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO"

Bach, JULIO CESAR RAMIREZ REQUEJO

Aprobado por el Jurado Examinador

PRESIDENTE: Dr. ING. FREDY DAVILA HURTADO

SECRETARIO: ING.MSC CARLOS YUPANQUI RODRIGUEZ

MIEMBRO: ING.MSC TEOBALDO OSCAR JULCA OROZCO

ASESOR : Dr. DANIEL CARRANZA MONTENEGRO

LAMBAYEQUE - PERÚ 2021

UNIVERSIDAD NACIONAL "PEDRO RUIZ GALLO"

TESIS

TITULO:

"DIMENSIONAMIENTO DE UN SISTEMA CON ENERGIAS RENOVABLES CONECTADO A LA RED PARA EL LABORATORIO DE COMPUTO – FIME DE LA UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO"

20	NIT.		ш		0
CO	N	IEľ	VП	JU	3

CAPITULO I: PROBLEMA DE INVESTIGACIÓN.

CAPITULO II : MARCO TEÓRICO.

CAPITULO III : MARCO METODOLÓGICO.

CAPITULO IV : PROPUESTA DE INVESTIGACIÓN

CAPITULO V : ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS.

CAPITULO VI: CONCLUSIONES Y RECOMENDACIONES.

Bach. JULIO CESAR RAMIREZ REQUEJO

PRESIDENTE	SECRETARIO
MIEMBRO	ASESOR

LAMBAYEQUE - PERÚ 2021

DEDICATORIA

Dedico este trabajo a mis padres Julio y Rosa, por todo el apoyo y cariño brindado y por todos los buenos valores inculcados.

Bach. Julio César Ramírez Requejo

AGRADECIMIENTO

Expresar mi Gratitud a Dios, por las bendiciones que derrama día a día a mi persona y a mi familia.

Mi agradecimiento profundo a mis padres

Julio y Rosa, quienes con sacrifico,
esfuerzo y con valores inculcados
hicieron de mi la persona que soy, gracias
por el total apoyo sincero y
verdaderamente incondicional.

Agradecer a mi asesor, el Ingeniero Dr. Daniel Carranza Montenegro, por su apoyo desinteresado para la elaboración de este trabajo de investigación.

De igual manera a todos los docentes de la Escuela de Ingeniería Mecánica y Eléctrica, por haberme brindado sus conocimientos que me sirvieron a lo largo de mi carrera profesional y me servirá profesionalmente.

Mi agradecimiento a todos los que de una u otra manera me ayudaron y motivaron en la realización de este proyecto.

Bach. Julio César Ramírez Requejo

RESUMEN

El objetivo general de la presente tesis fue dimensionar un sistema con energías

renovables conectado a la red para el laboratorio de cómputo – FIME. Dado que en la

UNPRG de Lambayeque la cual es una entidad comprometida contra el cambio climático

esta es una iniciativa para promover el uso de las energías renovables.

Los datos de irradiación solar se obtuvieron de NASTEC, del software METEONORM

y de SOLARIUS PLUS, obteniéndose que los valores promedios anuales de irradiación

solar son de: 5,47 kWh/m²/día; 5,86 kWh/m²/día; 5,75 kWh/m²/día; por lo que el

recurso solar si es aprovechable para generar energía eléctrica. Con respecto de la

velocidad del viento se obtuvo de la NASA y se obtuvo que para una altura de 20 m

la velocidad medio es de 3 m/s por lo que según (Alvaro, 1997, pág. 20) la velocidad

del viento debe ser mayor a 5 m/s; por lo que este recurso no se ha considerado como

parte del sistema de generación eléctrica.

El Laboratorio de cómputo de la Facultad de Ingeniería Mecánica y eléctrica esta

implementado con 25 computadores de 300 W, y que tiene 4 h de uso promedio diario;

en base a ello la energía promedio diaria es de 30 kW.h y una máxima demanda de 7,5

kW.

Se dimensionó el sistema fotovoltaico conectado a red el cual estará conformado por 26

paneles fotovoltaicos ERA SOLAR de 340 Wp, 01 Inversor FRONIUS de 8,2 k W,

además se calculó y seleccionó los conductores eléctricos, así como las protecciones.

El costo total del sistema propuesto es de S/. 25 146,89.

Palabras clave: Panel fotovoltaico, inversor, sistema conectado a red, energía renovable.

ABSTRACT

The general objective of this thesis was to dimension a system with renewable energies

connected to the network for the computer laboratory - FIME. Since the Pedro Ruiz Gallo de

Lambayeque National University is an entity committed against climate change, this is an

initiative to promote the use of renewable energy.

The solar irradiation data from NASTEC, the METEONORM software and SOLARIUS

PLUS, obtaining the annual average values of solar irradiation are: 5,47 kWh / m² / day; 5,86

kWh / m² / day; 5,75 kWh / m² / day; Therefore, the solar resource is usable to generate

electricity. Regarding the wind speed, it was obtained from NASA and it was obtained that for

a height of 20 m the average speed is 3 m/s, so according to (Alvaro, 1997, 20) the wind speed

must be greater than 5 m/s; therefore, this resource has not been considered as part of the

electricity generation system.

The Computer Laboratory of the Faculty of Mechanical and Electrical Engineering is

implemented with 25 computers of 300 W, and that has 4 hours of average daily use; Based on

this, the average daily energy is 30 kWh and a maximum demand of 7,5 kW.

The grid-connected photovoltaic system was dimensioned, which will consist of 26 ERA

SOLAR photovoltaic panels of 340 Wp, 01 FRONIUS inverter of 8,2 k W, in addition, the

electrical conductors were calculated and selected, as well as the protections.

The total cost of the proposed system is S /. 25 146,89.

Keywords: Photovoltaic panel, inverter, red connected system, renewable energy.

ÍNDICE

DEDICATORIA	IV
AGRADECIMIENTO	V
RESUMEN	VI
ABSTRACT	VII
ÍNDICE	VIII
ÍNDICE DE TABLAS	XI
ÍNDICE DE FIGURAS	XII
INTRODUCCIÓN	1
CAPITULO I: PROBLEMA DE INVESTIGACIÓN	2
1.1. Realidad Problemática	2
1.1.1. A nivel internacional	2
1.1.2. A nivel nacional	2
1.1.3. A nivel local	2
1.2. Formulación del Problema	3
1.3. Delimitación de la Investigación	3
1.3.1. Delimitación espacial	3
1.3.2. Delimitación temporal	5
1.4. Justificación e Importancia del estudio	5
1.4.1. Justificación Ambiental	5
1.4.2. Justificación Científica.	5
1.5. Limitaciones de la Investigación	6
1.6. Objetivos de estudio	6
1.6.1. Objetivo General	6
1.6.2. Objetivo Específicos	6
CAPITULO II: MARCO TEÓRICO	7
2.1. Antecedentes de Estudios	7
2.1.1. A nivel Internacional	7
2.1.2. A nivel Nacional	7
2.1.3. A nivel Local	8
2.2. Desarrollo de la temática correspondiente al tema desarrollado	9
2.2.1. Emisiones de gases de efecto invernadero	9
2.2.2. cambio climático	11

	2.2.3. Energía renovable	11
	2.2.4. La energía eólica	12
	2.2.5. Energía solar	16
	2.2.6. Instalaciones fotovoltaicas conectados a red	20
	2.2.7. Generador fotovoltaico	22
	2.2.8. inversor para Conexión a Red	30
	2.2.9. Cableado del Sistema Fotovoltaico	30
	2.2.10. Elementos de protección	31
	2.2.11. Puesta a tierra	31
2.	2. Definición conceptual de la terminología empleada	33
CAI	PITULO III: MARCO METODOLÓGICO	34
3.	1. Tipo y diseño de investigación	34
	3.1.1. Tipo de investigación: Aplicada	34
	3.1.2. Diseño de investigación: No experimental	34
3.	2. Población y muestra	34
3.	3. Técnicas de muestreo	34
3.	4. Hipótesis	34
3.	5. Variables - Operacionalización	34
3.	6. Métodos y Técnicas de investigación	36
3.	7. Descripción de los instrumentos utilizados	36
3.	8. Análisis Estadístico e interpretación de los datos	36
CAI	PITULO IV: PROPUESTA DE INVESTIGACIÓN	38
4.	1. Descripción del sistema propuesto	38
	4.1.1. Evaluación de los datos metrológicos: velocidad del viento e irradiación solar	38
	4.1.2. Cálculo de la demanda de energía eléctrica promedio diario y la máxima deman	ıda.
	4.1.3. Dimensionamiento y selección de equipos	38
	4.1.4. Cálculo del costo total del sistema	39
	4.1.5. Evaluación económica	39
CAI	PITULO V: ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS	40
	1. Obtención y procesamiento de datos meteorológicos: velocidad del viento e irradiad	
SC	olar	
	5.1.1. Datos de Irradiación solar	
	5.1.2. Datos de la velocidad del viento	
	5.1.3. Datos de Temperatura	44

5.2. Cálculo de la demanda de energía eléctrica promedio y máxima demanda	46
5.3. Cálculo y selección de equipos	46
5.3.1. Orientación de los paneles fotovoltaicos	50
5.3.2. Estructuras de soporte para paneles fotovoltaicos	52
5.3.3. Cálculo y selección del inversor	53
5.3.4. Cálculo de conductores eléctricos	59
5.3.5. Cálculo de protecciones	61
5.4. Costo del sistema propuesto	65
5.4.1. Costo del sistema de bombeo fotovoltaico	65
CAPITULO VI: CONCLUSIONES Y RECOMENDACIONES	66
6.1. Conclusiones	66
6.2. Recomendaciones	67
REFERENCIAS BIBLIOGRAFÍAS	68
ANEXOS	75

ÍNDICE DE TABLAS

Tabla 1 Ubicación del Laboratorio de cómputo-FIME-UNPRG	3
Tabla 2 Gases de efecto invernadero y sus fuentes de emisión	10
Tabla 3 Coeficiente de Hellmann en función de la rugosidad del terreno	13
Tabla 4 Operacionalización de variables	35
Tabla 5 cálculo de irradiación solar promedio mensual	42
Tabla 6 Irradiación solar en kW.h/m²/día, en Lambayeque- SOLARIUS PLUS	43
Tabla 7 Irradiación solar promedio diaria	43
Tabla 8 Rapidez del viento (m/s), en la UNPRG- NASA	44
Tabla 9 Datos de temperatura- Estación meteorológica Lambayeque- SENAMHI	45
Tabla 10 Comparación entre paneles de diferentes marcas	46
Tabla 11 Coeficientes de variación de los parámetros eléctricos del panel con la tempe	eratura
	54
Tabla 12 Configuración del sistema fotovoltaico	56
Tabla 13 Datos del inversor seleccionado	58
Tabla 14 Datos técnicos de conductores eléctricos NH-80	60
Tabla 15 Costo del sistema conectado a red	65

ÍNDICE DE FIGURAS

Figura 1: Ubicación del Laboratorio de cómputo de la FIME-UNPRG	4
Figura 2: Laboratorio de cómputo- FIME-UNPRG	5
Figura 3: Emisiones mundiales diarias de CO2; Enero - abril del 2020	10
Figura 4: Energías Renovables	11
Figura 5: Variación vertical del viento	13
Figura 6: Ley de Betz	14
Figura 7: Curva de ley de Betz	16
Figura 8: Emisión de radiación solar	17
Figura 9: Radiación solar	17
Figura 10: Energía recibida real y radiación equivalente en HSP	18
Figura 11: Efecto voltaico - Célula fotovoltaica	19
Figura 12: Irradiancia e Irradiación solar	20
Figura 13: Sistema conectado a la red	21
Figura 14: Generación eléctrica de una celda fotovoltaica	22
Figura 15: Curva característica I-V de una Celda Solar	23
Figura 16: Clasificación de las celdas solares	24
Figura 17: Panel Fotovoltaico	26
Figura 18: Curva V-I típica de una celda fotovoltaica	26
Figura 19: Efectos de la temperatura y la irradiación en la forma de la curva V-I	27
Figura 20: Conexión en serie	27

Figura 21: Conexión en paralelo	28
Figura 22: Conexión mixta	29
Figura 23: Montaje en tierra para panel fotovoltaico	30
Figura 24: conexión de Puesta a tierra del panel FV	32
Figura 25: Puesta a tierra del sistema fotovoltaico	32
Figura 26: Irradiación solar en la UNPRG según NASTEC	40
Figura 27: Irradiación solar-NASTEC	41
Figura 28:Irradiación solar según software- SOLARIUS PLUS	43
Figura 29: Estación meteorológica Lambayeque del SENAMHI	45
Figura 30.Geometría del panel fotovoltaico Era solar de 340 Wp	48
Figura 31: Distancia entre paneles fotovoltaicos	49
Figura 32: Vista superior del Laboratorio de cómputo- FIME	49
Figura 33: Orientación Norte en la azotea del edificio del laboratorio de cómputo FIME .	50
Figura 34: Trazo de las líneas en dirección norte	51
Figura 35: Ubicación de los 26 paneles fotovoltaicos en la azotea del edifico del labora	atorio
de cómputo- FIME	51
Figura 36. Estructura de soporte para 10 paneles fotovoltaicos	52
Figura 37. Estructura de soporte para 8 paneles fotovoltaicos	52
Figura 38. Configuración de los paneles fotovoltaicos	53
Figura 39. Inversor FRONIUS	56
Figura 40. fusible para sistema fotovoltaico de 10 A	61
Figura 41.Interruptor magnetotérmico de 10 A	62
Figura 42:Interruptor seccionador OTP32BA8MS	63
Figura 43: Interruptor termomagnético de 40 A	64
Figura 44: Interruptor diferencial 2x 40 A	64

INTRODUCCIÓN

El presente trabajo de investigación tiene como finalidad el dimensionamiento de un sistema con energías renovables conectado a la red para el laboratorio de cómputo – FIME de la Universidad Nacional Pedro Ruiz Gallo.

La tesis esta está estructurada en seis capítulos:

En el capítulo I se describe la realidad problemática, la delimitación, el objetivo general y los objetivos específicos, se redactan las limitaciones de la investigación debido a las fuentes de donde se obtuvieron los datos.

En el capítulo II, contiene toda la base teórica para la elaboración de la tesis, así como la definición de términos y conceptos que ayudan a esclarecer algunos términos usados.

En el tercer capítulo, en este capítulo se determinan las técnicas e instrumentos que se utilizó para la recolección de información.

En el cuarto capítulo, se describe la alternativa de solución frente a la realidad problemática se describe paso a paso el plan para lograr el objetivo general.

En el quinto capítulo, se seleccionan los equipos es decir el dimensionamiento y selección, así como la elaboración del presupuesto.

En el sexto capítulo, se redactan las conclusiones y recomendaciones.

CAPITULO I: PROBLEMA DE INVESTIGACIÓN

1.1. Realidad Problemática

1.1.1. A nivel internacional

La página Statista (2019) indica que "una de las causas principales del calentamiento global relacionadas con la actividad humana es la presencia de gases de efecto invernadero en la atmósfera, entre los que destaca por su efecto nocivo el dióxido de carbono".

1.1.2. A nivel nacional

Según la página web conexionesan (2019) indica que "la producción de electricidad aumentó hasta en un 186 % en los últimos 20 años. Las acciones que se deben tomar es evitar cualquier daño o impacto ambiental en cada proceso de producción".

1.1.3. A nivel local

Actualmente la Universidad Nacional Pedro Ruiz Gallo de Lambayeque es una entidad comprometida contra el cambio climático. Conscientes de las bondades de provechar los recursos renovables como son la radiación solar y el viento de manera que luego de su evaluación, se propone el diseño de un sistema de generación de energía eléctrica con energías renovables conectado a la red eléctrica que sirva para cubrir parte de la demanda energética de alguna construcción dentro de su campus universitario.

La Facultad de Ingeniería Mecánica y Eléctrica, cuenta con 3 edificios de 4 plantas con área libre en sus azoteas de aproximadamente 300 metros cuadrados, de las cuales ninguna de esas áreas se aprovecha para promover el uso de las energías renovables en

3

la generación de energía Eléctrica amigable con el medio ambiente, ya que como

Facultad encargada de formar Profesionales en el rubro de la Electricidad debería ser la

promotora de este tipo de energías.

1.2. Formulación del Problema

¿Con un sistema de energías renovables conectado a red lograremos suministrar la demanda de energía eléctrica del laboratorio de cómputo de la FIME-UNPRG?

1.3. Delimitación de la Investigación

1.3.1. Delimitación espacial

El desarrollo de esta tesis se realizó en el Laboratorio de cómputo de la FIME-UNPRG ubicado en el distrito y provincia de Lambayeque.

Tabla 1 Ubicación del Laboratorio de cómputo-FIME-UNPRG

Ubicación de la FIME-UNPRG -			
Lambayeque			
Latitud	-6,7077714		
Longitud	-79,9064118		

Fuente: elaboración propia. Datos: (Google Maps, 2019)

Figura 1: Ubicación del Laboratorio de cómputo de la FIME-UNPRG

Fuente: (Google Earth Pro, 2019)

Figura 2: Laboratorio de cómputo- FIME-UNPRG
Fuente: propia

1.3.2. Delimitación temporal

06 meses.

1.4. Justificación e Importancia del estudio

1.4.1. Justificación Ambiental

Esta tesis busca fomentar el uso de la energía renovable con la finalidad de proteger el medio ambiente.

1.4.2. Justificación Científica.

Fomentar el uso de las energías renovables.

1.5. Limitaciones de la Investigación

Los datos de irradiación solar fueron obtenidos de NASTEC, software SOLARIUS PLUS y del software METEONORM, con respecto de la velocidad del viento se obtuvo de la página web de la NASA, los datos de la temperatura de han obtenido de la estación meteorológica del SENAMHI para el año 2019.

1.6. Objetivos de estudio

1.6.1. Objetivo General

Dimensionar un sistema con energías renovables conectado a la red para el laboratorio de cómputo – FIME de la Universidad Nacional Pedro Ruiz Gallo.

1.6.2. Objetivo Específicos

- a) Evaluar la irradiación solar y velocidad del viento en el lugar de estudio.
- b) Calcular la demanda de energía eléctrica promedio y máxima demanda.
- c) Dimensionar y seleccionar los equipos del sistema.
- d) Calcular el costo total sistema.

CAPITULO II: MARCO TEÓRICO

2.1. Antecedentes de Estudios

2.1.1. A nivel Internacional

Colombia

Gutiérrez y Olaya (2016) propone un sistema conectado a la red eléctrica con la finalidad de utilizar los recursos renovables y reducir la contaminación ambiental, la tesis que presenta es una guía para e procedimiento de cálculo.

México

Ramos y Luna (2014) tesis titulada: "DISEÑO DE UN SISTEMA FOTOVOLTAICO INTEGRADO A LA RED PARA EL AREA DE ESTACIONAMIENTO DE LA UNIVERSIDAD TECNOLOGICA DE SALAMANCA" indican que: "La variación entre la carga medida, la registrada por CFE y la tomada, se encuentra en promedio de los 12 000 W/m² lo que garantiza el abasto de energía en el edificio" (pág. 94). Indican que se instalarán paneles fotovoltaicos con la finalidad de satisfacer la demanda de potencia de 83 661,65 kW.h por año.

2.1.2. A nivel Nacional

Piura

Sánchez (2019) propone un sistema conectado a red utilizando paneles solares para el centro poblado el Arenal. Luego de realizar la evaluación económica obtuvo que es viable con un VAN= S/ 47 888,9 y la TIR de 24,77 %.

San Ignacio

Según Aguirre (2019) en la tesis titulada: "Diseño de un sistema fotovoltaico conectado a la red eléctrica pública para la I.E. Nº 16531, puerto Chinchipe – San Ignacio"

El costo de inversión es de: S/15 714,34 y se obtuvo que el capital inicial retorna en 8,995 años, el cálculo del VAN indica un valor S/142,34 y la TIR de 10 %

Chimbote

Según Barreto (2017) en la tesis: "SUMINISTRO ALTERNATIVO DE ENERGIA ELECTRICA MEDIANTE PANELES SOLARES, PARA AUTOCONSUMO DOMICILIARIO EN EL SECTOR URBANO DE CHIMBOTE"

El sistema propuesto tuvo como objetivo reducir la emisión de gases que producen efecto invernadero, además se indica que existe un ahorro del 80 % del monto facturado.

2.1.3. A nivel Local

Chiclayo

En la tesis titulada "Análisis para la dotación de energía fotovoltaica para autoconsumo de la Institución Educativa Cristo Rey-Chiclayo", el autor Barboza (2019) indica que:

La institución educativa busca fomentar el uso de las energías renovables y busca a ser un modelo a seguir por las demás instituciones educativas.

Chiclayo

Según León (2020) en la tesis titulada : "Generación distribuida mediante el diseño de un sistema fotovoltaico conectado a la red de distribución en el Instituto ISA- Chiclayo"

El autor indica que: "en el Instituto de Educación Superior Tecnológico Privado ISA-Chiclayo el problema que se presenta es el alto costo mensual que se paga por consumo de energía eléctrica a la empresa distribuidora" (Leon, 2020, pág. 7).

Además, León (2020) indica que: en el sistema conectado a red "aprovecha las fuentes de energía renovables no convencionales como lo es la energía solar y cuyo diseño cumple con las necesidades del usuario al igual que se contribuya con el cuidado del medio ambiente generando energía eléctrica de manera limpia" (pág. 7).

Picsi

Según Vásquez (2019) en la tesis titulado: "Microgeneración distribuida con sistema fotovoltaico para autoconsumo en la Municipalidad de Picsi en el departamento de Lambayeque".

De los cálculos realizados en base a la propuesta obtuvo que "Los indicadores económicos evaluados para una tasa de descuento de 12 % y un periodo de 25 años fueron de: VAN de S/5 989,64 y la TIR de 14%, por lo que el sistema es viable" (pág. 6)

2.2. Desarrollo de la temática correspondiente al tema desarrollado

2.2.1. Emisiones de gases de efecto invernadero

"El efecto invernadero es un proceso natural por el cual los gases que están presentes en la atmósfera "atrapan" la radiación que la Tierra emite al espacio. Esta radiación resulta del calentamiento terrestre por la incidencia de la radiación solar" (Ministerio de Ambiente y Desarrollo Sustentable - Argentina, 2017, pág. 4).

Tabla 2
Gases de efecto invernadero y sus fuentes de emisión

(CO ₂) Dióxido de Carbono Combustibles fósiles Deforestación Quema de Biomasa Producción de Cemento	(CH ₄) Metano Arrozales y humedales Rumiantes Quema de Biomasa Combustibles fósiles	(N ₂ O) Óxido Nitroso Fuentes Biológicas Fertilización Quema de Biomasa Fuentes industriales
	Termitas Vertederos	
(HFCs) Hidrofluorocarbonos	(PFCs) Perfluorocarburos	(SF ₆) Hexafluoruro de Azufre
Equipos de refrigeración Aire acondicionado Extintores y Aerosoles	Producción de Aluminio	Equipos eléctricos

Fuente: (Cinquantini, Bertolino, Ayala, & Amanquez, 2016, pág. 5)

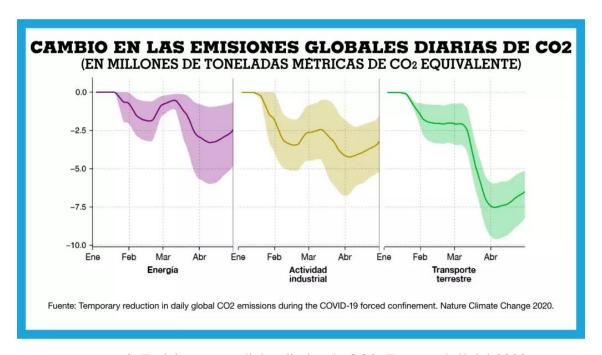


Figura 3: Emisiones mundiales diarias de CO2; Enero - abril del 2020

Fuente: (france24, 2020)

2.2.2. cambio climático

Según el artículo 1 de la UNFCCC (United Nations Framework Convention on Climate Change) citado por Von (2001) define cambio climático como: "un cambio de clima atribuido directa o indirectamente a la actividad humana que altera la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima observada durante períodos de tiempo comparables" (pág. 6).

2.2.3. Energía renovable

Según el "Instituto Interamericano de Cooperación para la Agricultura" (2015): "La energía renovable es cualquier forma de energía de origen solar, geofísico o biológico que se renueva mediante procesos naturales a un ritmo igual o superior a su tasa de utilización" (pág. 16).

Torrecilla (2014) afirma: "la disponibilidad de la energía renovable es de forma ilimitada, además no produce impacto sobre el medio ambiente al no emitir gases contaminantes, ni otro tipo de emisiones" (pág. 19).

Figura 4: Energías Renovables

Fuente: (ikSol, 2018)

2.2.4. La energía eólica

Según PUCP (2015) "La energía eólica es una fuente de energía renovable que convierte la energía cinética del viento, por medio de aerogeneradores, en energía eléctrica" (pág. 1).

"La energía eólica es la energía obtenida del viento. El viento tiene su origen en el desigual calentamiento de la atmósfera. Alrededor del 2% de la radiación proveniente del sol es convertida en energía eólica" (Román & Villacrés, 2019, pág. 1).

2.2.4.1. Ley exponencial de HELLMAN

Según Cochancela y Astudillo (2012): "El viento y la altura están relacionados, la velocidad del viento en función de la altura puede tener grandes variaciones y se lo conoce como perfil del viento. La forma de este perfil depende principalmente de la rugosidad del terreno" (pág. 21).

"Las velocidades más bajas del viento se dan cerca del suelo y aumentan con la altura hasta cotas de varios cientos de metros por encima del suelo, hay alturas especiales en las cuales son comunes las altas velocidades del viento" (Cochancela, J. & Astudillo,P., 2012, pág. 21).

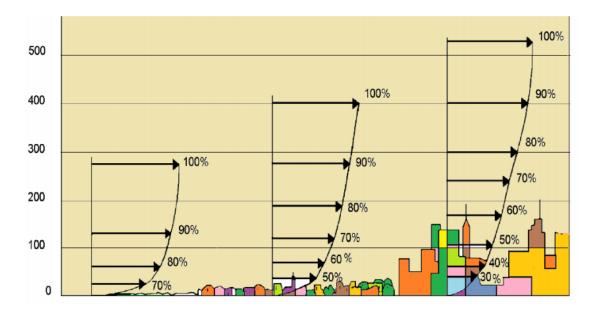


Figura 5: Variación vertical del viento

Fuente: (Montaña, 2015, pág. 26)

Según Cochancela y Astudillo (2012): "Existe un modelo sencillo para calcular el incremento de la velocidad con respecto a la altura, esta distribución de velocidades sigue una ley exponencial" (pág. 22).

$$\frac{V_1}{V_2} = \left(\frac{h_1}{h_2}\right)^{\alpha} \dots \dots (Ec.1)$$

Donde: α se obtiene de la tabla 3

Tabla 3 Coeficiente de Hellmann en función de la rugosidad del terreno

Tipo de Terreno	Valor de Coeficiente α
lugares llanos con hielo o hierba	0,08 - 0,12
Lugares llanos (mar o costa)	0,14
Terrenos poco accidentados	0,13 - 0,16
Zonas rústicas	0,2
Terrenos accidentados o bosques	0,2 - 0,26
Terrenos muy accidentados y ciudades	0,25 - 0,4

Fuente: (Cochancela, J. & Astudillo, P., 2012, pág. 22)

2.2.4.2. Limite Betz

Figura 6: Ley de Betz

Fuente: (Murillo, 2012, pág. 16)

Según Ruiz, Peña y Fernández (2013): "Se define la velocidad promedio del viento que pasa por el rotor del aerogenerador mediante la ecuación 2" (pág. 59)

$$V = \frac{V_e + V_s}{2} \dots (Ec. 2)$$

Según Ruiz, Peña y Fernández (2013): "El flujo másico del viento que pasa a través del rotor del aerogenerador viene dado por la ecuación 3" (pág. 59)

$$\dot{m} = \rho AV = \rho * Area del rotor * \left(\frac{V_e + V_s}{2}\right) \dots (Ec. 3)$$

Según Ruiz, Peña y Fernández (2013): "Por definición la potencia es la energía cinética de un flujo sobre un tiempo determinado (ecuación 4)". (pág. 60)

$$P = \frac{1}{2} mV^2 \dots (Ec. 4)$$

Según Ruiz, Peña y Fernández (2013): "Por conservación de la energía, la potencia aprovechada por el rotor, es la diferencia entre la potencia del flujo de aire que entra, y la potencia del flujo de aire que sale, como se muestra en la ecuación 5" (pág. 60)

$$P_a = \frac{1}{2} mV_e^2 - \frac{1}{2} mV_s^2 = \frac{1}{2} m(V_e^2 - V_s^2) \dots (Ec. 5)$$

La ecuación 3 la remplazo en la ecuación 5, se tiene:

$$P_a = \frac{1}{2} \left[\rho A \left(\frac{V_e + V_s}{2} \right) \right] (V_e^2 - V_s^2) \dots \dots (Ec. 6)$$

$$P_a = \frac{1}{4} \rho A (V_e - V_s)(V_e^2 - V_s^2) \dots (Ec.7)$$

Según Ruiz, Peña y Fernández (2013): "La potencia disponible del viento antes de pasar por el rotor, está dada por la ecuación 8" (pág. 61)

$$P_d = \frac{1}{2} \rho A V_1^3 \dots (Ec. 8)$$

Según Ruiz, Peña y Fernández (2013) "La fracción de potencia que puede ser aprovechada del viento está dada por la división de la potencia aprovechada sobre la potencia disponible, por lo tanto, se relaciona la ecuación 7 sobre la 8" (pág. 61).

$$\frac{P_a}{P_d} = \frac{1}{2} \left[1 - \left(\frac{V_s}{V_e} \right)^2 \right] \left[1 + \frac{V_s}{V_e} \right] \dots (Ec. 9)$$

Según Ruiz, Peña y Fernández (2013) "Utilizando la ecuación 9 se obtiene la curva de la Ley de Betz, mostrada a través de la Figura 7" (pág. 61).

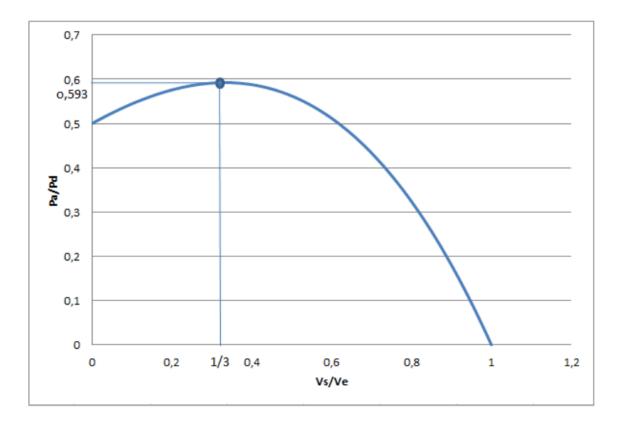


Figura 7: Curva de ley de Betz

Fuente: (Ruíz, J., Peña, J., & Fernández, A., 2013, pág. 61)

Según Ruiz, Peña y Fernández (2013) "La fracción de potencia máxima que se puede aprovechar es de 0,593. Esto significa que la energía aprovechada por un aerogenerador podrá ser como máximo el 59,3% de la energía disponible en el viento" (pág. 61).

2.2.5. Energía solar

Según Galeano (2014): "La energía solar es la energía radiante producida en el Sol, como resultado de reacciones nucleares de fusión que llegan a la Tierra a través del espacio en paquetes de energía llamados fotones (luz)" (pág. 2).

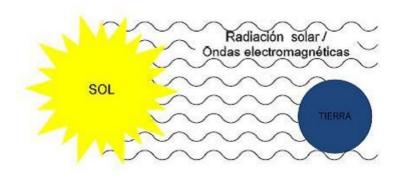


Figura 8: Emisión de radiación solar

Fuente: (Ahumada, R., 2017, pág. 43)

Según Ahumada (2017) "La energía solar tiene una serie de ventajas: Es inagotable, no es contaminante, es un sistema de aprovechamiento idóneo para zonas donde el tendido eléctrico no llega y los sistemas de captación solar son de fácil mantenimiento" (pág. 44)

2.2.5.1. Componentes de la radiación solar

En la figura se puede observar que 3 son las componentes de irradiación solar que la suma de ellas da el total.

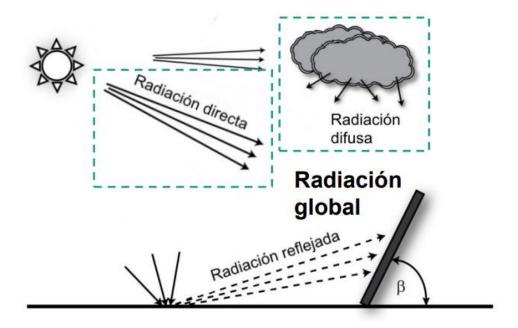


Figura 9: Radiación solar

Fuente: (Pino, 2015, pág. 3)

2.2.5.2. Horas de sol pico

Según García (2016): "La hora solar pico es una forma simplificada de expresar la irradiación diaria, equivale a las horas al día que la irradiación ha sido de 1 000 W/m²" (pág. 6).

"Por tanto, nosotros podemos afirmar que la cantidad de energía que se irradió durante todo el día es igual a la que se irradiara durante un número de HSP" (Mendoza & Estrada, 2010, pág. 11).

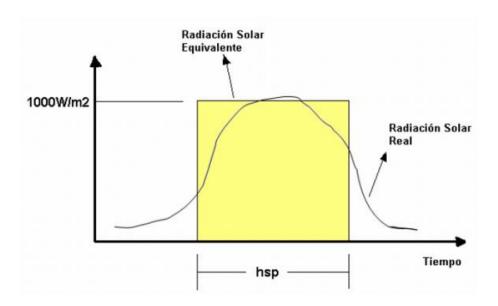


Figura 10: Energía recibida real y radiación equivalente en HSP

Fuente: (Mendoza & Estrada, 2010, pág. 11)

2.2.5.3. Efecto fotovoltaico

Según Romero (2018): "El efecto fotovoltaico es el efecto fotoeléctrico caracterizado por la producción de una corriente eléctrica entre dos piezas de material diferente que están en contacto y expuestas a la luz o, en general, a una radiación electromagnética" (pág. 29).

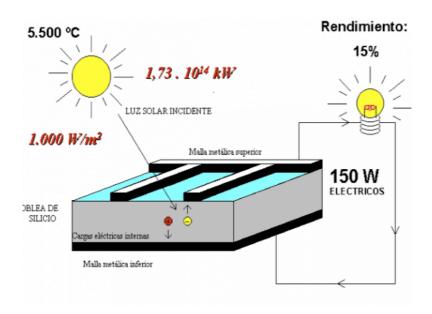


Figura 11: Efecto voltaico - Célula fotovoltaica

Fuente: (Romero, 2018, pág. 29)

2.2.5.4. Irradiación e irradiancia

Según Cushicondor (2019): "La irradiancia solar, está definida como la energía incidente sobre una superficie por unidad de área y tiempo, lo que equivale a la potencia incidente por unidad de superficie teniendo como unidad de medida el W/m²" (Cushicondor, 2019, pág. 5)

Según Cushicondor (2019): "La irradiación es el valor acumulado de la irradiancia solar en un intervalo de tiempo, corresponde a la energía recibida por unidad de superficie, se mide en Wh/m² o en determinados casos en J/m²" (Cushicondor, 2019, pág. 5)

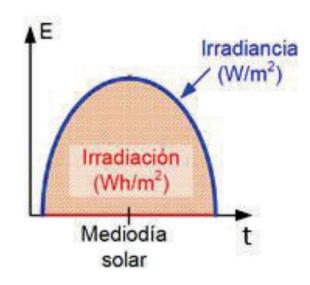


Figura 12: Irradiancia e Irradiación solar

Fuente: (Cushicondor, 2019, pág. 6)

2.2.6. Instalaciones fotovoltaicas conectados a red

Según Ordóñez (2017): "Con generación fotovoltaica y/o eólica, se puede autoabastecer de energía mientras estén disponibles los recursos renovables, y cuando estos no estén generando, el abastecimiento se lo realiza tomando energía de la red" (pág. 71).

Según Chou (2019): "En los sistemas conectados a la red, utilizan inversor para convertir la electricidad de corriente continua (DC) producida por los módulos fotovoltaicas a corriente alterna (AC) para alimentar las cargas doméstica o inyecta a la red eléctrica" (pág. 31).

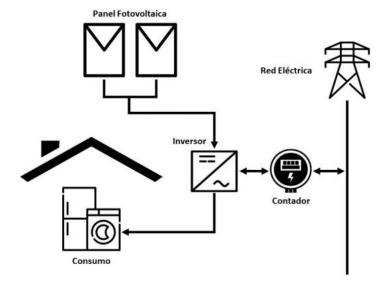


Figura 13: Sistema conectado a la red

Fuente: (Chou, 2019, pág. 31)

2.2.6.1. Autoconsumo instantáneo con inyección cero

Según Ordóñez (2017): "Sistema que siempre produce la energía que se consume en ese instante, cuando hay un excedente de generación de energía, se envía una orden a través de un inversor para que baje la producción y no inyectar en la red" (pág. 72). "La instalación cubre las necesidades energéticas instantáneas, o parte de ellas, y el propietario sólo necesita comprar a la red eléctrica la energía que su instalación no puede suministrar" (Ordóñez, 2017, pág. 72).

2.2.6.2. Autoconsumo con balance neto

Según Ordóñez (2017): "En este caso, la instalación renovable cubre las necesidades de electricidad, cuando se produce un excedente se vierte a la red a través de un medidor bidireccional, que luego se restarán de la electricidad que se demande de la red" (pág. 73).

"Es decir, si se requiere comprar 12 kWh hoy, pero ayer se vertió a la red 5 kWh que sobraron de la instalación FV, la compañía eléctrica sólo facturará la diferencia, que serían los 7 kWh" (Ordóñez, 2017, pág. 73).

"Este caso es el más interesante, puesto que se aprovecharía al máximo los beneficios de la instalación renovable, además de que inclusive la red eléctrica la puede considerar como un sistema de almacenamiento que ayuda hacer más eficiente al sistema" (Ordóñez, 2017, pág. 73).

2.2.7. Generador fotovoltaico

2.2.7.1. Celda solar

Según Asmat (2018): es la unidad del panel fotovoltaico en donde se produce la transformación de energía solar en energía eléctrica por absorción de fotones por parte de los electrones.

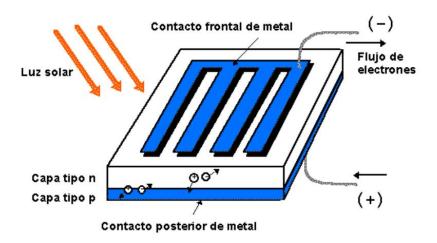


Figura 14: Generación eléctrica de una celda fotovoltaica

Fuente: (Asmat, 2018, pág. 22)

Para el cálculo del generador fotovoltaico se utilizará la siguiente ecuación.

$$P_{gen_fotov}(Wp) = \frac{E_{diario}}{HSPxPR} \dots (Ec. 10)$$

Donde: PR (rendimiento global de la instalación) "Los valores típicos de PR: sistema con inversor PR=0,7; sistema con inversor, batería y regulador PR=0,6" (pág. 135).

2.2.7.2. Parámetros de funcionamiento de una celda solar

En la figura 15 se puede observar cómo cambia la tensión la corriente eléctrica y la potencia.

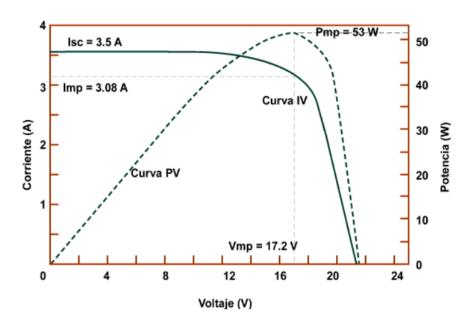


Figura 15: Curva característica I-V de una Celda Solar Fuente: (Flores & Domínguez , 2016, pág. 51)

El máximo valor de potencia se puede obtener con la ecuación 11.

$$P_{cel}=V_{cel}$$
, I_{cel} (Ec. 11)

Factor de forma

"Relaciona la potencia máxima, la tensión en circuito abierto y la corriente de corto circuito por la Max. El máximo valor que puede tomar es FF=1; así, cuanto más próximo sea este número a la unidad, mejor será la célula" (Flores J., 2018, pág. 45).

$$FF = \frac{P_{max}}{V_{oc}xI_{SC}}$$
....(Ec. 12)

Eficiencia

"Expresado en %, define el funcionamiento de la celda solar. Representa la relación entre la potencia que obtenemos de la célula y la potencia de la luz que incide sobre ella" (Flores J., 2018, pág. 45).

$$\eta = \frac{P_{max}}{AP_{solar}}....(Ec. 13)$$

2.2.7.3. Tipos de celdas solares

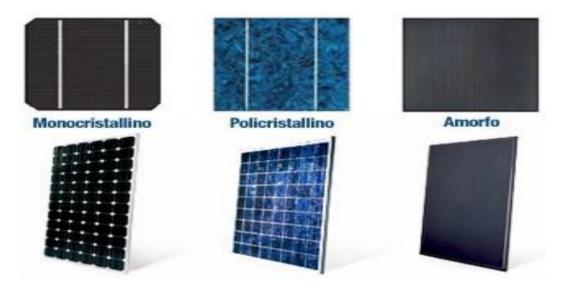


Figura 16: Clasificación de las celdas solares

Fuente: (Cabello, 2018, pág. 5)

Celdas de silicio monocristalino

Según Pons (2020): "Estas celdas se obtienen a partir de lingotes de silicio caracterizados por una retícula cristalina continua. Dichos lingotes se cortan en rodajas finas, de las que, mediante una serie de operaciones de mecanizado, se llega a las celdas fotovoltaicas" (Pons, 2020, pág. 14).

Celdas de silicio policristalino

Según Pons (2020): "En este caso, el proceso de mecanizado es distinto. La célula policristalina es menos pura ya que se deriva de la recuperación de los residuos del procesamiento de las celdas monocristalinas" (Pons, 2020, pág. 14)

Celdas de Estructura amorfa

"El otro tipo corresponde a las células amorfas (a=sin; morfo=forma), no poseen una estructura cristalina" (Macancela, 2012, pág. 54).

2.2.7.4. Panel fotovoltaico

Según Wilmer (2020): "El panel fotovoltaico es un conjunto de celdas fotovoltaicas, interconectadas convenientemente encajadas y protegidas que constituye el módulo fotovoltaico" (pág. 16).

"Las células fotoeléctricas transforman la energía solar en electricidad, en forma de corriente continua y ésta suele transformarse a corriente alterna, para poder utilizar los equipos electrónicos" (Wilmer, 2020, pág. 16)

Figura 17: Panel Fotovoltaico

Fuente: (Arroyo, 2011, pág. 25)

2.2.7.5. Efectos de la temperatura y la irradiación

Según Valencia (2013): tanto las variaciones de temperatura con irradiación producen cambios en los parámetros eléctricos de salida del panel fotovoltaico tal como se puede observar en las figuras 18 y 19.

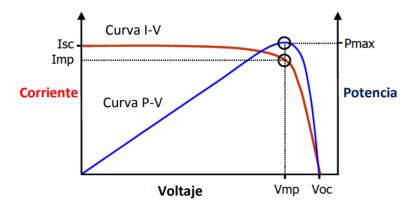


Figura 18: Curva V-I típica de una celda fotovoltaica

Fuente: (Valencia, 2013, pág. 412)

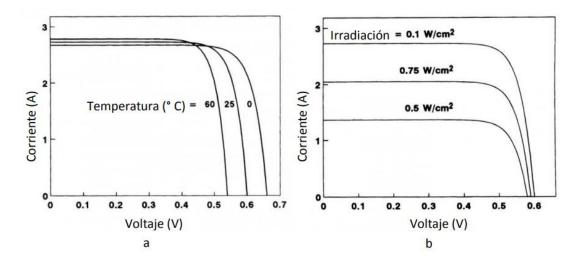


Figura 19: Efectos de la temperatura y la irradiación en la forma de la curva V-I Fuente: (Valencia, 2013, pág. 413)

2.2.7.6. Conexiones de módulos fotovoltaicos

a) Conexiones en serie

Según UDLAP (2006): Se realiza con la finalidad de aumentar la potencia y además de aumentar la tensión

$$V = V_1 + V_2 + V_3 \dots (Ec. 14)$$

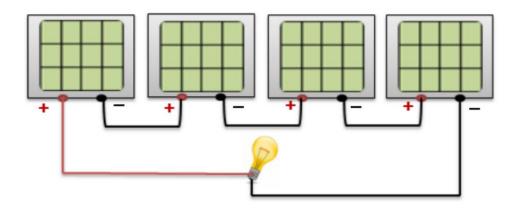


Figura 20: Conexión en serie

Fuente: (Ariza & Ospino, 2015, pág. 78)

 V_{mp} arreglo = $(V_{mp}$ de cada panel) (Numero de paneles en serie).... (Ec. 15)

b) Conexiones en paralelo

Según UDLAP (2006): Se realiza con la finalidad de aumentar la potencia y además de aumentar la corriente eléctrica manteniendo la tensión constante.

$$IT = I_1 + I_2 + I_3 \dots (Ec. 16)$$

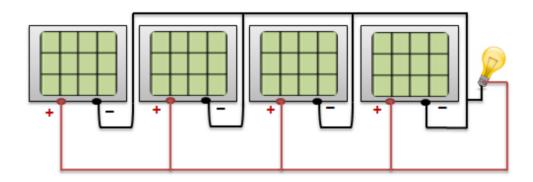


Figura 21: Conexión en paralelo

Fuente: (Ariza & Ospino, 2015, pág. 79)

 $P_{mp}arreglo = (P_{mp}de\ cada\ panel)\ (Numero\ de\ paneles\ en\ serie)....\ (Ec.\ 17)$

c) Conexiones mixtas

Martínez (2013): Se realiza con la finalidad de aumentar la potencia, la tensión y la corriente eléctrica de salida del generador fotovoltaico (figura 22).

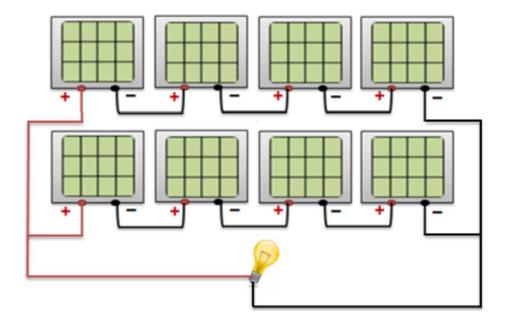


Figura 22: Conexión mixta

Fuente: (Ariza & Ospino, 2015, pág. 80)

 $P_{mp}arreglo = (P_{mp}de\ cada\ panel)\ (Numero\ total\ de\ paneles)....\ (Ec.\ 18)$

2.2.7.7. Montaje de paneles solares

Montaje en tierra:

Según Jeri y Sacha (2017): "Este es un clásico sistema de fijación de módulos para instalaciones fotovoltaicas sobre suelo, lo cual permite colocar los módulos en dos alturas en posición vertical" (pág. 46).

Figura 23: Montaje en tierra para panel fotovoltaico Fuente: (Jeri & Sacha, 2017, pág. 46)

2.2.8. inversor para Conexión a Red

Según Chávez (2015) "Un Inversor de corriente es el equipo encargado de transformar la energía recibida del generador fotovoltaico (en forma de corriente continua) y adaptarla a las condiciones requeridas, normalmente en corriente alterna y el posterior suministro a la red" (pág. 71).

"Los inversores vienen caracterizados principalmente por la tensión de entrada, que se debe adaptar al módulo fotovoltaico, la potencia máxima que puede proporcionar y la eficiencia" (Chávez, 2015, pág. 71).

2.2.9. Cableado del Sistema Fotovoltaico

Según Vásquez (2019): "Los sistemas de cableado de CD son diferentes a los sistemas de CA. Los sistemas CD usan bajo voltaje y fluyen en una sola dirección. Los tipos de cables se diferencian en el material conductor y el aislante" (pág. 24).

"Los materiales conductores más comunes son el cobre y el aluminio. El cobre tiene mayor conductividad y por lo tanto puede llevar más corriente que el de aluminio. El conductor puede ser sólido o retorcido" (Vásquez, 2019, pág. 24).

2.2.10. Elementos de protección

Según Buitrón (2010): "Al igual que una instalación eléctrica común, dentro de una instalación fotovoltaica, es de vital importancia la protección de los equipos y de la instalación eléctrica en general, estas protecciones son: fusibles, interruptores automáticos magneto térmicos (breakers)." (pág. 74).

2.2.11. Puesta a tierra

Según Jácome (2017): "Dentro de los sistemas fotovoltaicos se debe poner a tierra todas las partes expuestas metálicas no portadoras de corriente, como son estructuras y soportes metálicos de los módulos, del regulador de carga, de las baterías y la carcasa del inversor" (pág. 81).

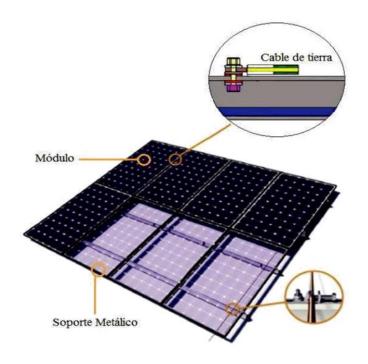


Figura 24: conexión de Puesta a tierra del panel FV

Fuente: (Jácome, 2017, pág. 82)

"Posteriormente se debe conectar el cable al electrodo, enterrada lo más cerca posible de la estructura metálica de soporte de los paneles solares. El mismo procedimiento de debe realizar para los soportes metálicos de los demás equipos" (Jácome, 2017, pág. 82)

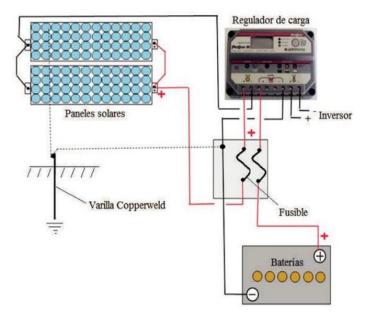


Figura 25: Puesta a tierra del sistema fotovoltaico

Fuente: (Jácome, 2017, pág. 82)

2.2. Definición conceptual de la terminología empleada.

Energía: Según: Dankoff Solar Products (2008) "El producto de potencia y tiempo, medido en vatios por hora. 1 kilovatio-hora (abreviación: kW.h). Variación: El producto de corriente por tiempo es amperios-hora, también llamado Amp.hr (Abreviación: Ah). 1000 vatios consumidos en 1 hora equivalen a 1 kW.h." (2008, pág. 1)

Potencia: "Es el producto de Voltaje por Corriente, medido en vatios. 1 000 vatios = 1 kilovatio. Un motor eléctrico requiere aproximadamente 1 kilovatio por caballo de fuerza (una vez descontadas las pérdidas típicas de rendimiento)" (Dankoff Solar Products, 2008, pág. 1).

Sistema Fotovoltaico: "Un grupo de módulos fotovoltaicos (también llamados paneles o colectores fotovoltaicos) dispuestos para producir el voltaje y corriente deseados" (Dankoff Solar Products, 2008, pág. 2).

Efecto fotoeléctrico

Según (Calvo, 2009): "Proceso por el cual se liberan electrones de un material por la acción de la radiación o emisión fotoeléctrica" (pág. 11).

Corriente eléctrica

Según (Calvo, 2009): "Es el flujo de energía eléctrica (electricidad) en un conductor, medido en amperios" (pág. 11).

CAPITULO III: MARCO METODOLÓGICO

3.1. Tipo y diseño de investigación

3.1.1. Tipo de investigación: Aplicada

En esta tesis se utilizarán la teoría relacionada con los sistemas conectados a red

utilizando energías renovables y aplicarlo para suministrar energía eléctrica al laboratorio

de cómputo de la FIME-UNPRG.

3.1.2. Diseño de investigación: No experimental

La investigación se realizará tomando datos de las variables sin alterarlas.

3.2. Población y muestra

La población está conformada por todas las computadoras de la FIME-UNPRG.

La muestra está conformada por todas las computadoras de la FIME-UNPRG.

3.3. Técnicas de muestreo

No se aplicó técnicas de muestreo, la razón es que se ha considerado el laboratorio de

cómputo por completo, es decir la población es igual a la muestra.

3.4. Hipótesis

Si se utilizan las energías renovables entonces con un sistema conectado a red

suministraremos energía eléctrica al laboratorio de cómputo de la FIME-UNPRG.

3.5. Variables - Operacionalización

Tal como se muestra en la Tabla 4, se identificaron las variables y se operacionalizan

X: Variable independiente:

Energías renovables (energía solar y eólica)

Y: Variable dependiente: Sistema conectado a red

Tabla 4 *Operacionalización de variables*

Variables	Definición Conceptual	Definición Operacional	Indicadores
Energías	"Se llama energías renovables (ER) a aquellas que se producen de forma		Irradiación solar (kWh/m²/día).
renovables (solar y eólica)	continua, son inagotables a escala humana y se renuevan continuamente, a diferencia de los combustibles fósiles, de los que existen unas determinadas cantidades agotables" (Reyes, 2019, pág. 25)	Evaluación de los recursos Aplicación de las energías renovables para generar energía eléctrica	Velocidad del viento (m/s)
Sistema conectado a red	"Consiste básicamente en un generador fotovoltaico acoplado a un inversor que opera en paralelo con la red eléctrica convencional" (Ujaen, 2015).		Potencia de paneles fotovoltaicos (Wp) Inversor (W) Energía promedio diaria (kWh/día), Máxima demanda (W)

Fuente: Elaboración propia

3.6. Métodos y Técnicas de investigación

Técnicas

Observación directa

Se recopilará información por ejemplo de la potencia de las computadoras, el número de computadoras.

Análisis de documentos

La información obtenida para la elaboración del marco teórico y actualización de conocimientos se obtuvo de tesis, revistas, visitas a páginas web, etc.

Entrevista

Se entrevistó al encargado del del laboratorio de cómputo de la Facultad de ingeniería Mecánica y eléctrica con la finalidad de que brinde información sobre el horario de uso de dicho laboratorio.

3.7. Descripción de los instrumentos utilizados

Se realizaron visitas técnicas al laboratorio de cómputo de la FIME-UNPRG, se aplicó la técnica de observación para saber el número de computadoras, se visitó la azotea del edificio con la finalidad de constatar el espacio destinado para el generador fotovoltaico, se utilizó un cuaderno de apuntes y cámara fotográfica. Además se entrevistó al encargado del laboratorio de cómputo para saber el número de horas de utilización diario. Se recolecto información de tesis páginas web utilizando la técnica de análisis documental.

3.8. Análisis Estadístico e interpretación de los datos

Se realizó la gráfica de la de la evolución de estos recursos renovables considerando la bibliográfica respectiva para seleccionar que recurso energético apropiado para la

generación de energía eléctrica. Luego se dimensionaron y seleccionaron los equipos considerando la energía promedio diaria del uso de las computadoras, se utilizó la estadística descriptiva para el procesamiento de datos.

CAPITULO IV: PROPUESTA DE INVESTIGACIÓN

4.1. Descripción del sistema propuesto

En consideración de la problemática en esta investigación se propone el diseño de un sistema de generación eléctrica con energías no convencionales conectado a la red de autoconsumo para el laboratorio de cómputo – FIME.

4.1.1. Evaluación de los datos metrológicos: velocidad del viento e irradiación solar

Los datos obtenidos de la NASA, en cuanto a irradiación solar consideraremos que el mínimo recomendado de irradiación solar debe ser de 4 kW.h/m²/día (Chercca, 2014, pág. 16), con respecto de la rapidez viento 5 m/s (Alvaro, 1997, pág. 20). En base a este análisis seleccionaremos el tipo de recurso a aprovecharse en la generación de energía eléctrica al laboratorio de cómputo – FIME-UNPRG.

4.1.2. Cálculo de la demanda de energía eléctrica promedio diario y la máxima demanda.

Teniendo en cuenta el número de computadoras, la potencia y el número de horas de utilización se procederá a calcular la energía promedio diaria.

4.1.3. Dimensionamiento y selección de equipos

Se seleccionarán los equipos necesarios considerando las cotizaciones respectivas que se incluirán en el ítem de anexos. Se realizarán los planos de conexiones de quipos.

4.1.4. Cálculo del costo total del sistema

Luego de seleccionar todos los equipos se procede al cálculo del costo total teniendo en cuenta el suministro, transporte y montaje.

4.1.5. Evaluación económica

Debemos tener en cuenta que a lo largo de la vida útil del sistema propuesto se tiene costos de operación y mantenimiento los cuales serán actualizados considerando una tasa de descuento y así poder determinar los indicadores financieros y posteriormente evaluar si la propuesta es viable.

CAPITULO V: ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS

5.1. Obtención y procesamiento de datos meteorológicos: velocidad del viento e irradiación solar.

5.1.1. Datos de Irradiación solar

5.1.1.1. Datos de irradiación solar según NASTEC.

De los datos obtenidos se obtiene que la irradiación solar promedio es de 5,69 kW.h/m²/día.

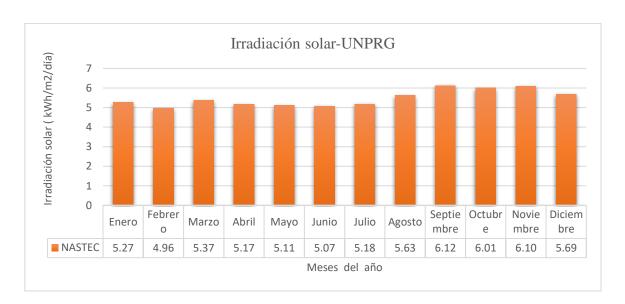


Figura 26: Irradiación solar en la UNPRG según NASTEC

Fuente: elaboración propia. Datos: (NASTEC, 2020)

De la figura 26 se observa como cambia la irradiación solar a medida que cambian los meses es así que el mes con menor irradiación solar es febrero con un valor de 4,96 kW.h/m²/día y el mes de mayor irradiación solares el mes de 6,12 kW.h/m²/día.

Seleccionar todo	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	PROMEDIO
Promedio diario de la radiación solar [kWh/m^2/day] Para paneles inclinada mismo que la latitud	5.27	4.96	5.37	5.17	5.11	5.07	5.18	5.63	6.12	6.01	6.10	5.69	5.47
Temperatura ambiente máxima diaria [°C]	26.76	26.34	26.57	27.19	27.42	27.15	27.17	27.94	28.45	28.48	27.80	27.07	27.36
Temperatura ambiente diaria minima [°C]	19.14	19.18	19.27	19.46	18.73	17.67	16.82	17.18	18.14	18.44	18.15	18.86	18.42
Temperatura media diaria [°C]	22.95	22.76	22.92	23.33	23.08	22.41	22.00	22.56	23.30	23.46	22.98	22.97	22.89

Figura 27: Irradiación solar-NASTEC

Fuente: (NASTEC, 2020)

5.1.1.2. Datos de irradiación solar según METEONORM.

Tabla 5 <u>cálculo de irradiación solar promedio mensual</u>

Mes	Gh(kWh/m²)	Días(mes)	Gh(kWh/m²/día)
Enero	195	31	6,29
febrero	183	28	6,54
Marzo	205	31	6,61
Abril	186	30	6,20
Mayo	171	31	5,52
Junio	147	30	4,90
Julio	146	31	4,91
Agosto	157	31	5,06
Septiembre	179	30	5,97
Octubre	189	31	6,10
Noviembre	183	30	6,10
Diciembre	196	31	6,32

Fuente: propia: Datos: software METEONORM

La irradiación solar promedio anual según el software METEONOR (versión libre) es de 5,86 kWh/m²/día.

De la tabla 5 se observa cómo cambia la irradiación solar a medida que cambian los meses es así que el mes con menor irradiación solar es julio con un valor de 4,71 kW.h/m²/día y el mes de mayor irradiación solares el mes de marzo con un valor de 6,61 kW.h/m²/día.

5.1.1.3. Datos de irradiación solar en Lambayeque según SOLARIUS PLUS

Figura 28:Irradiación solar según software- SOLARIUS PLUS

Fuente: software SOLARIUS PLUS

Tabla 6 Irradiación solar en kW.h/m²/día, en Lambayeque- SOLARIUS PLUS

					Μe	eses						Media
Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	anual
6,29	6,54	6,60	6,19	5,51	4,90	4,92	5,07	5,96	6,10	6,10	6,33	5,75

Fuente: Elaboración propia. Datos software SOLARIUS PLUS

De la tabla 6 se observa cómo cambia la irradiación solar a medida que cambian los meses es así que el mes con menor irradiación solar es julio con un valor de 4,72 kW.h/m²/día y el mes de mayor irradiación solares el mes de marzo con un valor de 6,60 kW.h/m²/día.

De las tres fuentes anteriores se tiene:

Tabla 7 Irradiación solar promedio diaria

	nción promedio diario ual (kWh/m²/día)
NACTEC	F 47
NASTEC	5,47
METEONORM	5,86
SOLARIUS PLUS	5,75
Fuente: propia	

De la tabla 7 la menor irradiación promedio diaria es de 5,47 kW.h/m²/día por lo que según (Chercca, 2014, pág. 16) este recurso puede ser aprovechado para la generación de energía electica. Para el cálculo del sistema se considera: 4,90 kW.h/m²/día.

5.1.2. Datos de la velocidad del viento Tabla 8

Rapidez del viento (m/s), en la UNPRG- NASA

	Rapide	z del vien	to (m/s)
	h=50 m	h=30 m	h=20 m
Enero	3,17	2,79	2,52
Febrero	3,16	2,78	2,51
Marzo	3,12	2,75	2,48
Abril	3,49	3,07	2,78
Mayo	3,98	3,50	3,17
Junio	4,94	4,35	3,93
Julio	4,85	4,27	3,86
Agosto	4,56	4,01	3,63
Septiembre	4,34	3,82	3,45
Octubre	3,68	3,24	2,93
Noviembre	3,51	3,09	2,79
Diciembre	3,26	2,87	2,59
Enero	3,84	3,38	3,05

Fuente: Elaboración propia. Datos NASA

De la tabla 8, la velocidad del viento está por debajo del valor recomendado 5 m/s según (Alvaro, 1997, pág. 20), además considerando que la velocidad de arranque de la mayoría de los aerogeneradores es de 3 m/s.

De la evaluación de ambos recursos se ha considerado el recurso solar para el diseño del sistema conectado a red suministraremos energía eléctrica al laboratorio de cómputo – FIME UNPRG.

5.1.3. Datos de Temperatura

Los datos de temperatura han sido obtenidos de la estación meteorológica Lambayeque durante todo el año 2019.

Datos Hidrometeorológicos a nivel nacional

Figura 29: Estación meteorológica Lambayeque del SENAMHI Fuente: (SENAMHI, 2019)

Tabla 9
Datos de temperatura- Estación meteorológica Lambayeque- SENAMHI

	TEMPE	
	(°	C)
MES	MAX	MIN
01/01/2019	36,2	18
01/02/2019	35,4	20
01/03/2019	36,4	18
01/04/2019	35,4	17
01/05/2019	33,4	14,6
01/06/2019	31,6	12,4
01/07/2019	30	9,2
01/08/2019	30,8	10
01/09/2019	32,4	10
01/10/2019	33,4	12
01/11/2019	33,4	15
01/12/2019	34,4	17
Valores	,	
extremos	36,4	9,2

Fuente: propia, Datos: SENAMHI

Del ANEXO 01 luego de procesar la información se ha elaborado la tabla 9 de donde se tiene que el valor mínimo de temperatura es de: 9,2 °C y la temperatura máxima fue de 36, 4° C.

5.2. Cálculo de la demanda de energía eléctrica promedio y máxima demanda.

El número de equipos de cómputo presentes en el laboratorio es de 25. El laboratorio encuentra ubicado en el primer nivel de un edificio de 4 niveles ubicado en la facultad.

La potencia de las computadoras es de 300 W

El número de horas promedio de horas de usos del laboratorio es de: 4 h

Energia promedio diaria
$$(kW.h) = 25x0,3x4 = 30 kW.h$$

Entonces la potencia del generador fotovoltaico es de:

$$P_{gen_fotov}(kWp) = \frac{30 \text{ kW.h}}{4.90 \times 0.7} = 8,75 \text{ kWp}$$

5.3. Cálculo y selección de equipos

Se ha seleccionado panales fotovoltaicos de la marca ERA SOLAR de 340 Wp

$$N_{paneles\,fotvoltaicos} = \frac{8\,750\,Wp}{340\,Wp} = 25,70 \approx 26$$

Tabla 10 Comparación entre paneles de diferentes marcas

Fabricante	potencia (Wp)	Costo (S/.)	Nº módulos	costo total (S/.)	potencia del generador fotovoltaico (kWp)
ERA SOLAR	340	635,38	26	16 519,88	8,84
ERA SOLAR	270	503,15	34	17 107,10	9,18
AMERISOLAR	270	826,06	34	28 086,04	9,18
TAI ENERGY	250	953,23	36	34 316,28	9,00
JINKO	270	609,68	34	20 729,12	9,18

Fuente: elaboración propia. Datos: Autosolar

Ahora calculamos el ángulo de inclinación de los paneles:

$$\beta_{ont} = 3.7 + (0.69 \times |\Phi|) \dots (Ec. 19)$$

Donde:

Φes la latitud del lugar: -6.698

$$\beta_{opt} = 8,23^{\circ}$$

La inclinación óptima es de 8,23°; se considerará un ángulo de inclinación 15° para evitar la acumulación de humedad y polvo.

El panel es de 1956x992 mm. Para el diseño se ha considerado un montaje vertical

$$d_1 = Lcos(\beta)...(Ec. 20)$$

$$d_2 = \frac{h}{tg(61^\circ - \emptyset)}....(Ec. 21)$$

$$h = Lsen(\beta)....(Ec. 22)$$

$$D = d_1 + d_2 = Lcos(\beta) + \frac{Lsen(\beta)}{tg(61^\circ - \emptyset)}....(Ec. 23)$$

Reemplazando datos tenemos

$$D = 1956 + \frac{1956xsen(15^\circ)}{tg(61^\circ - 6,698^\circ)} = 2253,26 \text{ mm} \dots (Ec. 24)$$

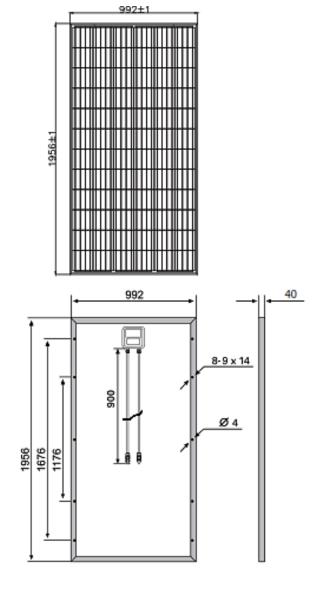


Figura 30. Geometría del panel fotovoltaico Era solar de 340 Wp

Fuente: (ERA SOLAR, 2019)

Monsolar (2015) "Recomienda aumentar un 25% la distancia obtenida del cálculo siempre que sea posible"

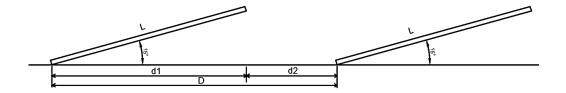


Figura 31: Distancia entre paneles fotovoltaicos

Fuente: elaboración propia

Entonces 2 816,58 mm consideraremos 3 000 mm lo que significa que para cada panel fotovoltaico se necita un área de 3 m^2

Figura 32: Vista superior del Laboratorio de cómputo-FIME

Fuente: UNPRG

Entonces el área total que ocuparía el generador fotovoltaico es de 78 m². Procedemos a verificar el área disponible en la azotea del edificio donde se encuentra ubicado el

laboratorio de cómputo que tiene un valor de 285 m² por lo que se verifica que tenemos el área más que suficiente.

5.3.1. Orientación de los paneles fotovoltaicos

Perú se encuentra ubicado en los hemisferios sur por lo que los paneles fotovoltaicos deben estar orientador hacia el norte

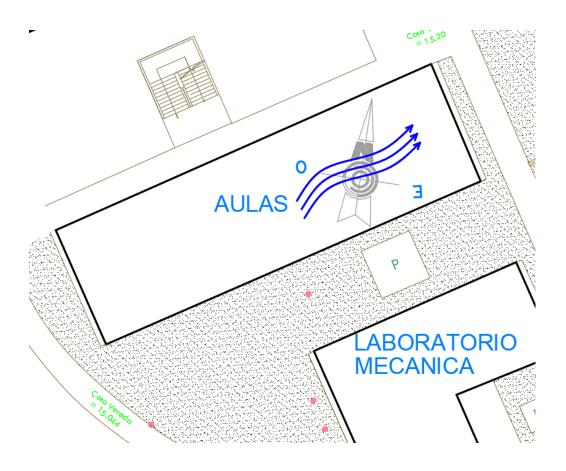


Figura 33: Orientación Norte en la azotea del edificio del laboratorio de cómputo FIME Fuente: Propia. Datos: UNPRG

Por la ubicación no hay ningún otro edificio cercano que podría producir sombras

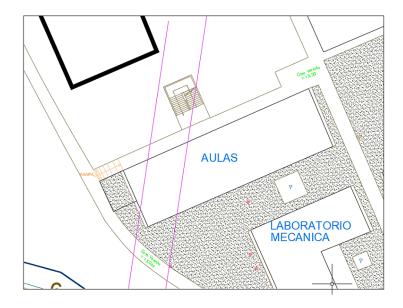


Figura 34: Trazo de las líneas en dirección norte

Fuente: Propia. Datos: UNPRG

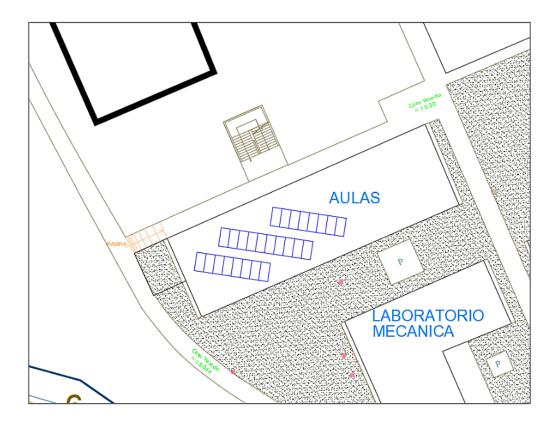


Figura 35: Ubicación de los 26 paneles fotovoltaicos en la azotea del edifico del laboratorio de cómputo- FIME

Fuente: elaboración propia

5.3.2. Estructuras de soporte para paneles fotovoltaicos

Con la distribución de paneles fotovoltaicos de la figura 37 y visitando la página del proveedor AUTOSOLAR se tienen estructuras de soporte para un ángulo de inclinación de 15°, tanto para 10 paneles fotovoltaicos como para 8 paneles fotovoltaicos tal como se muestra a continuación

Estructura Cubierta Plana 10 ud CVE915 15°

Figura 36. Estructura de soporte para 10 paneles fotovoltaicos

Fuente: AUTOSOLAR

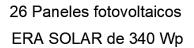

Estructura Cubierta Plana 8 ud CVE915 15°

Figura 37. Estructura de soporte para 8 paneles fotovoltaicos

Fuente: AUTOSOLAR

Entonces se utilizará una estructura de soporte para 10 paneles fotovoltaicos y 02 estructuras de soporte para 08 paneles fotovoltaicos.

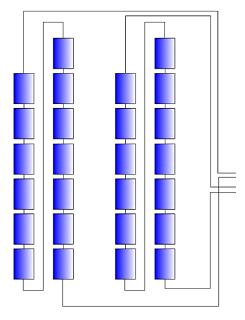


Figura 38. Configuración de los paneles fotovoltaicos

Fuente: elaboración propia

5.3.3. Cálculo y selección del inversor

Teniendo los datos de los paneles fotovoltaicos, así como la data de variación de temperatura procedemos a calcular la variación de los parámetros eléctricos del generador fotovoltaico.

Aplicando la ecuación 25

$$T_{emperatura_celula_fotvoltaica}({}^{\circ}C) = T_{ambiente} + \frac{(45-20)}{800}x800 \dots (Ec. 25)$$

Tabla 11 Coeficientes de variación de los parámetros eléctricos del panel con la temperatura

ELECTRICAL PERFORMANCE	
Module type: ESPMC	340
Maximum Power(Wp)	340W
Open circuit Voltage(Voc)	46.4V
Short circuit Current(Isc)	9.45A
Maximum Power Voltage(Vm)	38.5V
Maximum Power Current(Im)	8.84A
Module efficiency	17.5%
Maximum Series Fuse	15A
Watts positive tolerance	0~+3%
Number of Diode	3
Standard Test Conditions	1000W/M²,25°C,AM1.5
Maximum System Voltage	1000V/DC
Temperature-Coefficient Isc	+0.08558%/°C
Temperature-Coefficient Uoc	-0.29506%/°C
Temperature-Coefficient Pmpp	-0.38001%/°C
Normal Operating Cell Temperature	-40°C+85°C
Load Capacity for the cover of the module (glass)	5400Pa(IEC61215)(snow)
Load Capacity for the front & back of the module	2400Pa(IEC61215)(wind)
Product Certificate	TUV(IEC 61215,IEC 61730),CE, ROHS,PID Resisitant,INMETRO
Company Certificate	ISO9001,ISO14001,ISO18001

Fuente: (ERA SOLAR, 2019)

a) Coeficiente de temperatura de la tensión a circuito abierto del panel fotovoltaico

$$\alpha = \frac{\alpha(\%)}{100} x V_{oc} = \frac{-0.29506}{100} x 46.40 = -0.1369 V/^{\circ}C$$

b) Coeficiente de temperatura de la corriente de cortocircuito del panel fotovoltaico

$$\beta = \frac{\beta(\%)}{100} x I_{sc} = \frac{0.08558}{100} x 9.45 = 0.008087 A/^{\circ}C$$

c) Coeficiente de temperatura de la tensión Vmppt

$$\beta = \frac{\beta(\%)}{100} x V_{mppt} \ \beta = \frac{-0.2906}{100} x 38,50 = -0.1136 \ V/^{\circ}C$$

Cálculo para verano T máx.= 36,4°C:

Temperatura de la célula, aplicando la ecuación 25:

$$T_p = 36,40 + \frac{(45 - 20)}{800} x1000 = 67,65 \,^{\circ}\text{C}$$

La tensión de circuito abierto y la corriente de cortocircuito:

$$V_{OC(tmax)} = V_{OC(25 \, ^{\circ}\text{C})} + \alpha x (T - 25) \, \dots (\text{Ec. 26})$$

$$V_{OC(tmax)} = 46,40 - 0,1369x (67,65 - 25) = 40,56 \, V$$

$$I_{SC(tmax)} = I_{SC(25 \, ^{\circ}\text{C})} + \beta x (T - 25) \, \dots (\text{Ec. 27})$$

$$I_{SC(tmax)} = 9,45 + 0,008087x (67,65 - 25) = 9,795 \, A$$

$$V_{mmpp(tmax)} = V_{mpp(25 \, ^{\circ}\text{C})} - 0,1136x (T - 25) \, \dots (\text{Ec. 28})$$

$$V_{mmpp(tmax)} = 38,50 - 0,1136x (67,65 - 25) = 43,34 \, V$$

Cálculo para invierno T = 9,2 °C:

Temperatura de la célula:

$$T_p = 9.2 + \frac{(45 - 20)}{800} x1000 = 40.45 \,^{\circ}\text{C}$$

La tensión de circuito abierto, aplicando la ecuación 26

$$V_{OC(tmin)} = 46,40 - 0,1369x(40,45 - 25) = 44,28 V$$

la corriente de cortocircuito, aplicando la ecuación 27

$$I_{SC(tmin)} = 9,45 + 0,008087x(40,45 - 25) = 9,57 A$$

Tensión a la máxima potencia, aplicando la ecuación 28

$$V_{mppt(tmin)} = 38,50 - 0,1136x(40,45 - 25) = 40,26 V$$

Tabla 12 Configuración del sistema fotovoltaico

N	M	ax	Tn	nin
paneles/serie	Vmp	Voc	Vmp	Voc
13	563,48	527,29	523,32	575,70
		Enant		

Fuente: propia

Con los resultados obtenidos en la tabla 12 seleccionamos el inversor

Figura 39. Inversor FRONIUS

Fuente: AUTOSOLAR

Verificación del inversor seleccionado

- a) La tensión Vmppt del generador fotovoltaico debe estar entre: 270 V y 800 V (ver tabla 13), lo cual se corrobora pues se encuentra entre 523,32 V y 563,48 V.
- b) La corriente eléctrica de entrada máxima de cortocircuito es de: 27 A (ver tabla 13),
 la corriente de cortocircuito del generador fotovoltaico es de: 2x9,795 A=
 19,59 A < 27 A.
- c) La máxima potencia del generador fotovoltaico que se puede conectar es de:

12,3 kWp (ver tabla 13) > 26 x (340 Wp) = 8,84 kWp.

Tabla 13

Datos del inversor seleccionado

DATOS DE ENTRADA	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 8.2-1				
Máxima corriente de entrada (I _{demás, 1} / I _{demás, 2})	12 A / 12 A	18 A	/ 18 A				
Máxima corriente de cortocircuito por serie FV (MPP ₃ /MPP ₂)	18 A / 18 A	A / 27 A					
Mínima tensión de entrada (U _{de mín})	80 V						
Tensión CC mínima de puesta en servicio (U _{de}	80 V						
Tensión de entrada nominal (U _{de,r})	710 V						
Máxima tensión de entrada (U _{de máx.})	1.000 V						
Rango de tensión MPP (U _{mpp mín.} – U _{mpp máx.})	240 - 800 V 270						
Número de seguidores MPP	2						
Número de entradas CC		2 + 2					
Máxima salida del generador FV (P _{de máx})	7,5 kW _{pine}	9,0 kW _{pico}	12,3 kW _{pin}				
DATOS DE SALIDA	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 8.2-1				
Potencia nominal CA (Pac,r)	5.000 W	6.000 W	8.200 W				
Máxima potencia de salida	5.000 VA	6.000 VA	8.200 VA				
Corriente de salida CA (I _{ac nom.})	21,7 A	26,1 A	35,7 A				
Acoplamiento a la red (rango de tensión)	1 ~ NPE 220 V / 230 V (180 V - 270 V)						
Precuencia (rango de frecuencia)	50 Hz / 60 Hz (45 - 65 Hz)						
Coeficiente de distorsión no lineal		< 5 %					
Factor de potencia (cos φ _{ac,r})		0,85 - 1 ind. / cap.					

fuente: (Fronius, 2016, pág. 3)

5.3.4. Cálculo de conductores eléctricos

Para realizar el cálculo utilizaremos la siguiente ecuación:

Seccion
$$(mm^2) = \frac{2 \text{ x Longitud x I}(corriente)}{56 \text{ x } \Delta V \text{ (caida de tension)}} \dots \text{ (Ec. 29)}$$

Generador fotovoltaico al inversor

De acuerdo con Cornejo (2013) "la máxima caída de tensión debe ser 1,5 % y la máxima recomendada 1,0%" (pág. 62).

"La corriente máxima que va a circular por los conductores es la de cortocircuito de los paneles. Cada ramal suministrará una corriente máxima igual a la de cortocircuito de cada uno de los módulos que lo forman" (pág. 65).

Con se tiene 2 ramas en paralelo de 13 paneles fotovoltaicos cada uno entonces la corriente de cortocircuito será:

$$I = 2x9,795 A = 19,59 A$$

De la característica del inversor observamos que tiene dos seguidores MPP, tiene dos entradas para ramas de panales de hasta 18 A por lo que estas dos ramas van a conectar al inversor

De acuerdo con Cornejo (2013) "En este tramo existirá una tensión igual a la tensión del punto de máxima potencia de cada panel, por el número de paneles en serie que forman cada ramal" (pág. 65).

De la tabla 12 tenemos 563,48 V, aplicando la ecuación 29:

$$S = \frac{2 \times 30 \times 8,84}{56 \times 563,48/100} = 1,68 \text{ } mm2$$

Tabla 14 Datos técnicos de conductores eléctricos NH-80

CALIBRE		DIAMETRO	DIAMETRO	ESPESOR	DIAMETRO	PESO	AMPER	AJE (*)
CONDUCTOR	N° HILOS	HILO	CONDUCTOR	AISLAMIENTO	EXTERIOR	1250	AIRE	DUCTO
mm²		mm	mm	mm	mm	Kg/Km	Α	Α
1.5	7	0.52	1.50	0.7	2.9	20	18	14
2.5	7	0.66	1.92	0.8	3.5	31	30	24
4	7	0.84	2.44	0.8	4.0	46	35	31
6	7	1.02	2.98	0.8	4.6	65	50	39
10	7	1.33	3.99	1.0	6.0	110	74	51
16	7	1.69	4.67	1.0	6.7	167	99	68
25	7	2.13	5.88	1.2	8.3	262	132	88
35	7	2.51	6.92	1.2	9.3	356	165	110
50	19	1.77	8.15	1.4	11.0	480	204	138
70	19	2.13	9.78	1.4	12.6	678	253	165
95	19	2.51	11.55	1.6	14.8	942	303	198
120	37	2.02	13.00	1.6	16.2	1174	352	231
150	37	2.24	14.41	1.8	18.0	1443	413	264
185	37	2.51	16.16	2.0	20.2	1809	473	303
240	37	2.87	18.51	2.2	22.9	2368	528	352
300	37	3.22	20.73	2.4	25.5	2963	633	391

Fuente: (Promelsa, 2010, pág. 2)

Se selecciona el conductor NH 80 de 2,5 mm²

Inversor al tablero de distribución

De acuerdo con Cornejo (2013) "la máxima caída de tensión debe ser 2,0 %" (pág. 62).

En este caso consideraremos la potencia del inversor

$$S = \frac{2 \times L \times P}{56 \times V \times \Delta V} \dots (Ec. 30)$$

Remplazando tenemos:

$$S = \frac{2 \times 6 \times 8200}{56 \times 220 \times 4.4} = 1,82 \ mm^2$$

De la tabla 13, se selecciona conductor NH-80 de 10,0 mm²

5.3.5. Cálculo de protecciones

Protección con fusibles

Cada rama de paneles fotovoltaicos ira protegida con fusibles

La corriente eléctrica Impp del módulo es de 8,84 A, además sabemos que se va a utilizar el conductor NH-80 de 2,5 mm² que tiene una capacidad de 24 A en ducto y 30 A al aire libre.

El dispositivo de protección debe cumplir con la siguiente relación:

 $I_{utilizacion} \leq I_{Nominal\ de\ la\ proteccion} \leq I_{condutor_electrico} \dots (Ec. 31)$

$$8,84 \le I_N \le 24 \dots (Ec.32)$$

⊌ Fusible 10A

Figura 40. fusible para sistema fotovoltaico de 10 A Fuente: (COPER Bussmann, 2010)

Seleccionamos fusibles de 10 A

$$I_C = 1.6 \times I_N = 1.6 \times 10 = 16 \text{ A}$$

$$I_C \le 1,45 \times I_Z \dots (Ec.33)$$

 $16 \le 1,45 \text{ x} 24 = 34.8 \text{ A} \dots \text{ Ok}$

Interruptores magnetotérmicos

Según Cornejo (2013) "con la finalidad de realizar maniobras con corte al aire. Para sobre intensidades pequeñas y prolongadas actúa como protección térmica" (pág. 72).

En cada ramal se colocará un interruptor magnetotérmico, para este tramo el conductor es NH 80 de 2,5 mm², con una capacidad de corriente de 24 A en ducto.

Aplicando la ecuación 31:

$$8,84 \le I_N \le 24$$

$$I_N = 10 A$$

Se utilizará dos interruptores magnetotérmicos de 10 A, uno en cada rama del generador fotovoltaico

Figura 41. Interruptor magnetotérmico de 10 A

Fuente: (ABB, 2015, pág. 32)

Caja de conexión del generador fotovoltaico al inversor

Según Cornejo (2013) "El interruptor seccionador tendrá la función de aislar el generador fotovoltaico para labores de mantenimiento como limpieza reparación de incidencias" (pág. 75).

$$V_{oc} = 580,36 V$$

$$I_{sc} = 2x8,84 = 17,68 \ AV$$

Se selecciona un interruptor seccionador de la marca ABB de 4 polos, tipo OTP32BA8MS, cuya tensión máxima es de 750 V DC y corriente eléctrica nominal de 32 A.

Figura 42: Interruptor seccionador OTP32BA8MS

Fuente: (ABB, 2011, pág. 32)

Protecciones desde el inversor hasta la baja tensión en corriente alterna

Interruptor magnetotérmico

Con la potencia del inversor 8 200 W, monofásico y la tensión 220 V (tensión que suministra al laboratorio de cómputo)

$$I = \frac{8200}{220} = 37,28A$$

Entonces para el interruptor termomagnético la corriente nominal es de:

 $37,28 \text{ A} \leq \text{IN} \leq 51 \text{ A}$

La intensidad nominal del 1 interruptor termomagnético es de 40 A.

Figura 43: Interruptor termomagnético de 40 A

Fuente: (Interruptor Termomagnético 2P 40A - Riel Din, 2019)

Interruptor diferencial:

Se ha seleccionado un interruptor diferencial 2x 40 A.

Figura 44: Interruptor diferencial 2x 40 A

Fuente: (Schneider Electric, 2019)

5.4. Costo del sistema propuesto

5.4.1. Costo del sistema de bombeo fotovoltaico

Tabla 15 Costo del sistema conectado a red

DEFINICION	Costo/unitario (S/)	_ Costo (S/)
26 módulos fotovoltaicos ERA	538,46	13 999,96
SOLAR de 340 Wp		
01 inversor FRONIUS de 8,2 kW	9 924,70	
01 estructura para 10 paneles	1 689,20	1 689,20
fotovoltaicos (CVE915- 15°)		
02 estructura para 08 paneles	1 420,35	2 840,70
fotovoltaicos (CVE915- 15°)		
Accesorios	500	500
Costo del suministro		19 029,86
Montaje		1 902,99
Transporte		380,60
Costo sin IGV		21 313,44
IGV (18 %)		3 836,42
Costo total incluido IGV		25 149,86

Fuente: elaboración propia

CAPITULO VI: CONCLUSIONES Y RECOMENDACIONES

6.1. Conclusiones

- a) Se obtuvo los datos de irradiación solar de NASTEC, del software METEONORM y de SOLARIUS PLUS, obteniéndose que los valores promedios anuales de irradiación solar son de: 5,47 kWh/m²/día; 5,86 kWh/m²/día; 5,75 kWh/m²/día; por lo que el recurso solar si es aprovechable para generar energía eléctrica. Con respecto de la velocidad del viento se obtuvo de la NASA y se obtuvo que para una altura de 20 m la velocidad medio es de 3 m/s y de acuerdo con (Alvaro, 1997, pág. 20) la velocidad del viento debe ser mayor a 5 m/s; por lo que este recurso no se ha considerado para como parte del sistema de generación eléctrica.
- b) El Laboratorio de cómputo de la Facultad de Ingeniería Mecánica y eléctrica esta implementado con 25 computadores de 300 W, y que tiene 4 h de uso promedio diario; en base a ello la energía promedio diaria es de 30 kW.h con una máxima demanda de 7,5 kW.
- c) El sistema conectado a red estará conformado por 26 paneles fotovoltaicos ERA SOLAR de 340 Wp, 01 Inversor FRONIUS de 8,2 k W, además se calculó y seleccionó los conductores eléctricos, así como las protecciones.
- d) El costo total es de S/. 25 146,89.

6.2. Recomendaciones

a) Actualizar los precios de los equipos para el año en que se desea realizar la implementación.

REFERENCIAS BIBLIOGRAFÍAS

- 1) Cabello, S. (2018). Reconfiguración dinámica del campo solar de una planta fotovoltaica para maximizar la producción de energía. (*Tesis de Pregrado*). Obtenido de https://idus.us.es/bitstream/handle/11441/87356/TFG-CABELLO%20GARCIA.pdf;jsessionid=8BC6A1C57549D429F8C597FF8427B0BF?sequence=1&isAllowed=y
- 2) ABB. (2011). *Enclosed switches and fusegear*. Obtenido de https://cdn.kempstoncontrols.com/files/0793bab1389cc6de5f8b55b0e769873e/OTP32 BA8MS.pdf
- 3) ABB. (2015). *Productos de baja tensión Soluciones para energía solar*. Obtenido de https://search.abb.com/library/download.aspx?documentid=1sdc007350b0701&langu agecode=es&documentpartid=&action=launch
- 4) Aguirre, N. (2019). Diseño de un sistema fotovoltaico conectado a la red eléctrica pública para la I.E. Nº 16531, puerto Chinchipe San Ignacio. (*Tesis de pregrado*). Obtenido de http://repositorio.unj.edu.pe/bitstream/handle/UNJ/185/Aguirre_PNE.pdf?sequence=1 &isAllowed=y
- 5) Agustin Castejon, G. S. (2010). instalaciones solares fotovoltaicas. España.
- 6) Ahumada, R. (2017). DISEÑO DEL SISTEMA DE BOMBEO AUTOMATIZADO CON ENERGIA FOTOVOLTAICA PARA LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DEL DISTRITO DE VILAVILA. (*Tesis de pregrado*). Obtenido de http://181.176.163.136/bitstream/handle/UNAP/5285/Ahumada_Valdez_Ramiro.pdf? sequence=1&isAllowed=y
- 7) Alvaro, S. (1997). *MANUAL DE APLICACIÓN DE LA ENERGÍA EÓLICA*. Obtenido de http://bva.colech.edu.mx/xmlui/bitstream/handle/123456789/HASH6be8e1631f04239 3fa4b1f/en002.pdf?sequence=3
- 8) Ariza, J., & Ospino, R. (2015). Investigación Aplicada para Desarrollo Tecnológico e Innovación en el área de Planeamiento Energético. (*Tesis de Pregrado*). Obtenido de https://repositorio.cuc.edu.co/bitstream/handle/11323/921/72004882%20y%20104828 9911.pdf?sequence=1&isAllowed=y
- 9) Arroyo, C. (2011). Análisis del Comportamiento y de la Evolución Temporal de los Parámetros de un Inversor Fotovoltaico. (*Tesis de Pregrado*). Obtenido de https://e-archivo.uc3m.es/bitstream/handle/10016/13584/PFC_Carlos_Arroyo_Martinez.pdf?se quence=1

- 10) Asmat, C. (2018). DETERMINACIÓN DE LA EFICIENCIA DE UN SISTEMA DE BOMBEO FOTOVOLTAICO EN EL DISTRITO DE YAURISQUE CUSCO. (*Tesis de Pregrado*). Obtenido de http://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/3141/asmat-cacerescindy-pierne.pdf?sequence=1&isAllowed=y
- 11) Auto Solar Perú. (2019). *Estructura Cubierta Plana 10 ud CVE915 15°*. Obtenido de https://autosolar.pe/soportes-suelo/estructura-cubierta-plana-10-ud-cve915-15o
- 12) Auto Solar Perú. (2019). *Estructura Cubierta Plana 8 ud CVE915 15°*. Obtenido de https://autosolar.pe/soportes-suelo/estructura-cubierta-plana-8-ud-cve915-15o
- 13) Barboza C., L. A. (2019). Análisis para la dotación de energía fotovoltaica para autoconsumo de la Institución Educativa Cristo Rey-Chiclayo. (*Tesis de pregrado*). Obtenido de http://repositorio.unprg.edu.pe/bitstream/handle/UNPRG/8026/BC-4425%20BARBOZA%20CUEVA.pdf?sequence=1&isAllowed=y
- 14) Barreto, P. (2017). "SUMINISTRO ALTERNATIVO DE ENERGIA ELECTRICA MEDIANTE PANELES SOLARES, PARA AUTOCONSUMO DOMICILIARIO EN EL SECTOR URBANO DE CHIMBOTE". (*Tesis de pregrado*). Obtenido de http://repositorio.usanpedro.edu.pe/bitstream/handle/USANPEDRO/5677/Tesis_5707 8.pdf?sequence=1&isAllowed=y
- 15) Buitrón, R., & Burbano, G. (2010). ELABORACIÓN DE UNA NORMATIVA PARA EL DISEÑO Y DIAGNÓSTICO DE SISTEMAS FOTOVOLTAICOS RESIDENCIALES AUTÓNOMOS PARA EL ECUADOR. (*Tesis de Pregrado*). Obtenido de https://bibdigital.epn.edu.ec/bitstream/15000/2252/1/CD-2992.pdf
- 16) Calvo, F. (2009). "ANALISIS DE VIABILIDAD PARA LA IMPLEMENTACIÓN DE SISTEMAS DE GENERACIÓN ELECTRICA USANDO ENERGIA SOLAR PARA USO RESIDENCIAL". (*Tesis de Pregrado*). UNIVERSIDAD DE SAN BUENAVENTURA, Medellín, Colombia. Obtenido de http://bibliotecadigital.usbcali.edu.co/bitstream/10819/319/1/Analisis_Viabilidad_Imp lementacion_Calvo_2009.pdf
- 17) Chávez, J. (2015). DISEÑO DE UN GENERADOR DE ENERGÍA FOTOVOLTAICA PARA EL CENTRO UNIVERSITARIO DE NOR-OCCIDENTE (CUNOROC), UNIVERSIDAD DE SAN CARLOS DE GUATEMALA, BAJO LA NORMATIVA DE GENERACIÓN DISTRIBUIDA. (*Tesis de Pregrado*). Obtenido de http://www.repositorio.usac.edu.gt/1125/1/Jos%C3%A9%20Fernando%20Ch%C3%A1vez%20Villatoro.pdf
- 18) Chercca, J. (2014). APROVECHAMIENTO DEL RECURSO EÓLICO Y SOLAR EN LA GENERACIÓN DE ENERGÍA ELÉCTRICA Y LA REDUCCIÓN DE EMISIONES DE CO2 EN EL POBLADO RURAL LA GRAMITA DE CASMA. (Tesis de maestria). Obtenido de http://cybertesis.uni.edu.pe/bitstream/uni/1694/1/chercca_rj.pdf
- 19) Chou, T. (2019). Sistemas Fotovoltaicos Para Electrificación Rural: Su Potencial Para Modificar El Mix Eléctrico En La República Dominicana. (*Tesis de Maestria*).

- Obtenido de https://repositorio.upct.es/bitstream/handle/10317/8204/tfm-chosis.pdf?sequence=1&isAllowed=y
- 20) Cinquantini, M. A., Bertolino, R., Ayala, E., & Amanquez, C. (2016). Obtenido de Modelo de Inventario de Gases de Efecto Invernadero para Ciudades y Gobiernos Locales: https://library.fes.de/pdf-files/bueros/argentinien/12675.pdf
- 21) Cochancela, J., & Astudillo,P. (2012). Análisis eólico previo a la instalación de una central eólica utilizando las distribuciones de Weibull y Rayleigh. (*Tesis de pregrado*). Obtenido de http://dspace.ucuenca.edu.ec/bitstream/123456789/699/1/te330.pdf
- 22) conexionesan. (2019). El consumo energético: ¿cuál es su impacto ambiental a nivel mundial? Obtenido de https://www.esan.edu.pe/apuntes-empresariales/2019/02/el-consumo-energetico-cual-es-su-impacto-ambiental-a-nivel-mundial/
- 23) COPER Bussmann. (2010). *Máxima protección en aplicaciones de energía solar*. Obtenido de http://www1.cooperbussmann.com/pdf/ac081fe4-0e32-4885-a3ee-2642c41d1584.pdf
- 24) Cornejo, H. (2013). SISTEMA SOLAR FOTOVOLTAICO DE CONEXION A RED DEL CENTRO MATERNO INFANTIL DE LA UNIVERSIDAD DE PIURA. (*Tesis de pregrado*). Piura. Obtenido de https://pirhua.udep.edu.pe/bitstream/handle/11042/1762/IME_172.pdf
- 25) Cushicondor, S. (2019). ESTIMACIÓN DE IRRADIANCIA SOLAR BASADA EN MODELOS MATEMÁTICOS Y MEDICIÓN DE VARIABLES ELÉCTRICAS DE PANELES FOTOVOLTAICOS. (*Tesis de Pregrado*). Obtenido de https://bibdigital.epn.edu.ec/bitstream/15000/20171/1/CD%209640.pdf
- 26) Dankoff Solar Products. (2008). *Guía de Traducción y Glosario de Términos Técnicos Relativos a Bombas de Agua Movidas por Energía Solar*. Obtenido de https://www.aice-interpretes.com/noticias/pdfnoticias1590.pdf
- 27) ERA SOLAR. (2019). *POLYCRYSTALLINE*, 72-CELL SERIES. Obtenido de https://autosolar.es/pdf/ERA-340w.pdf
- 28) Flores, J. (2018). "METODO PARA LA MEJORA DEL SUMINISTRO SOSTENIBLE DE ENERGÍA ELÉCTRICA RENOVABLE CON CELDAS FOTOVOLTAICAS EN LAS ZONAS RURALES DE LA REGIÓN AREQUIPA, 2018. (Tesis de Maestria). UNIVERSIDAD NACIONAL DE SAN AGUSTIN DE AREQUIPA. Obtenido de Metodo para la mejora del suministro sostenible de energía eléctrica renovable con celdas fotovoltaicas en las zonas rurales de la Región Arequipa, 2018:
 - http://repositorio.unsa.edu.pe/bitstream/handle/UNSA/7214/ELMfllaja.pdf?sequence =1&isAllowed=y
- 29) Flores, N., & Domínguez, M. (2016). Medición de la eficiencia energética de los paneles solares de silicio. (*Tesis de Pregrado*). Obtenido de https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/791/1/Norma%20Rosario%20flores%20Rivera%2C%20Miguel%20%C3%81ngel%20Dom%C3%ADnguez

- %20Ram%C3%ADrez%20Maestr%C3%ADa%20en%20Energ%C3%ADas%20Reno vables.pdf
- 30) france24. (27 de 05 de 2020). *El descenso de las emisiones durante la pandemia de Covid-19 será solo temporal*. Obtenido de https://www.france24.com/es/medio-ambiente/20200527-medio-ambiente-emisiones-co2-covid19-descenso
- 31) Fronius. (2016). *PFRONIUS PRIMO*. Obtenido de https://autosolar.pe/pdf/Fronius-Primo.pdf
- 32) Galeano, S. (2014). Beneficios de la utilización de energía solar en la Escuela Básica N°4765 de la comunidad indígena La Promesa en el departamento de Presidente Hayes.

 Obtenido de http://www.solartronic.com/download/Energia_Solar_Conceptos_Basicos.pdf
- 33) García, R. (2016). Diseño de un proyecto tipo de instalación fotovoltaica aislada y automatizada para un rótulo luminoso basado en tubos de descarga. (*Tesis de Pregrado*).
- 34) Google Maps. (2019). *Universidad Nacional Pedro Ruiz Gallo*. Obtenido de https://www.google.com/maps/place/Universidad+Nacional+Pedro+Ruiz+Gallo/@-6.7077714,-79.9043896,111m/data=!3m1!1e3!4m5!3m4!1s0x904ced9307db00dd:0xd82bb63ce69b1c52!8m2!3d-6.7077407!4d-79.9042231
- 35) Guierrez, H., & Olaya, B. (2016). Dimensionamiento de un sistema fotovoltaico sin baterías conectado a una red de distribución secundaria. (*Tesis de pregrado*). Obtenido de https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1091&context=ing_electrica
- 36) IICA. (2015). Obtenido de Uso y acceso a las energías renovables en territorios rurales: http://repiica.iica.int/B3661e/B3661e.pdf
- 37) ikSol. (2018). Obtenido de Energía Renovable: ¿Qué es y para qué sirve?: https://iksol.com.mx/energia-renovable-que-es-y-para-que-sirve
- 38) Interruptor Termomagnético 2P 40A Riel Din. (2019). *Interruptor Termomagnético* 2P 40A Riel Din. Obtenido de https://www.sodimac.com.pe/sodimac-pe/product/225657/interruptor-termomagnetico-2p-40a-riel-din
- 39) Jácome, B. (2017). PROPUESTA DE SISTEMA DE BOMBEO UTILIZANDO PANELES FOTOVOLTAICOS. (*Tesis de Pregrado*). Obtenido de http://repositorio.ucsg.edu.ec/bitstream/3317/9091/1/T-UCSG-PRE-TEC-IEM-122.pdf
- 40) Jeri, J., & Sacha, G. (2017). Obtenido de PROYECTO DE FACTIBILIDAD EN EL USO DE PANELES SOLARES COMO GENERACIÓN FOTOVOLTAICA PARA SUMINISTRO DE ELECTRICIDAD EN AMBIENTES ENAMM: http://repositorio.enamm.edu.pe/bitstream/ENAMM/73/1/TESIS%2064%20-%20JERI%20-%20SACHA.pdf

- 41) Leon, L. (2020). Generación distribuida mediante el diseño de un sistema fotovoltaico conectado a la red de distribución en el Instituto ISA- Chiclayo. (*Tesis de pregrado*). Obtenido de https://alicia.concytec.gob.pe/vufind/Record/UPRG_85681d4f6475589a0b1bbfe5c62 ab2ef
- 42) Macancela, L. (2012). DIAGNÓSTICO DE LA IMPLEMENTACIÓN DE LOS SISTEMAS FOTOVOLTAICOS CORRESPONDIENTES A LA PRIMERA ETAPA DEL PROYECTO YANTSA ii ETSARI. (*Tesis de Pregrado*). Obtenido de https://dspace.ucuenca.edu.ec/bitstream/123456789/689/1/te321.pdf
- 43) Martínez, J. (2013). IMPLEMENTACIÓN DE PANELES SOLARES EN CASA HABITACIÓN. (*Tesis de Pregrado*). Obtenido de https://tesis.ipn.mx/jspui/bitstream/123456789/13782/1/IMPLEMENTACI%C3%93N %20DE%20PANELES%20SOLARES%20EN%20CASA.pdf
- 44) Mendoza, J., & Estrada, O. (2010). DISEÑO DE UN SISTEMA DE GENERADORES FOTOVOLTAICOS CON CONEXIÓN A LA RED EN LA UNIVERSIDAD DON BOSCO. (*Tesis de Pregrado*). Obtenido de http://rd.udb.edu.sv:8080/jspui/bitstream/11715/1210/1/TRABAJO%20DE%20GRA DUACION.pdf
- 45) Ministerio de Ambiente y Desarrollo Sustentable Argentina. (2017). Obtenido de Inventario Nacional de Gases de Efecto Invernadero Argentina: https://www.undp.org/content/dam/rblac/docs/Research%20and%20Publications/Repository/Argentina/UNDP-RBLAC-EfectoInvernaderoAR.pdf
- 46) Monsolar. (2015). *Calculadora separación entre paneles para evitar sombras*. Obtenido de https://www.monsolar.com/separacion-paneles-solares
- 47) Montaña, J. (2015). EVALUACION TECNICA PARA MINIGENERACION DE ENERGIA ELECTRICA CON SISTEMAS HIBRIDOS EÓLICOS/FOTO-VOLTAICOS (E/F-V) EN CENTROS URBANOS DE COLOMBIA. Obtenido de https://docplayer.es/1150091-Evaluacion-tecnica-para-minigeneracion-de-energia-electrica-con-sistemas-hibridos-eolicos-foto-voltaicos-e-f-v-en-centros-urbanos-de-colombia.html
- 48) Murillo, J. (2012). *DISEÑO DE UN ALTERNADOR DE FLUJO AXIAL CON IMANES PERMANENTES*. Obtenido de https://zaguan.unizar.es/record/6997/files/TAZ-PFC-2012-151.pdf
- 49) NASA. (2019). NASA Prediction Of Worldwide Energy Resources. Obtenido de https://power.larc.nasa.gov/
- 50) NASTEC. (2020). NASTEC. Obtenido de https://solar.nastec.eu/Systems/Edit/15315/
- 51) Ordóñez, J. (2017). Obtenido de ANÁLISIS DE VIABILIDAD TÉCNICO-ECONÓMICO DE SISTEMAS CON ENERGÍAS RENOVABLES A PEQUEÑA ESCALA CON NUEVAS TECNOLOGÍAS DE ALMACENAMIENTO: https://iconline.ipleiria.pt/bitstream/10400.8/3166/1/Disserta%C3%A7%C3%A3o_Jor ge Luis Ordo%C3%B1ez Dominguez 2152198.pdf

- 52) Pino, A. (2015). *Red de estaciones solarimétricas*. Obtenido de https://www.fraunhofer.cl/content/dam/chile/es/documents/150814_Red%20de%20es taciones%20solarim%c3%a9tricas%20PUC-DICTUC-FCR_APino.pdf
- 53) Pons, J. (2020). *Diseño de una instalación de autoconsumo fotovoltaico con excedentes para un espacio gastronómico en Mallorca*. Obtenido de https://upcommons.upc.edu/bitstream/handle/2117/185215/TFG%20JOAN%20PONS %20LLOBERA.pdf
- 54) Promelsa. (2010). *FREETOX NH-80*. Obtenido de http://www.promelsa.com.pe/pdf/1000418.pdf
- 55) PUCP. (2015). *ENERGÍA SOLAR Y EÓLICA*. Obtenido de http://files.pucp.edu.pe/agenda/wp-content/uploads/2015/06/cca_contenido_energia_eolica_new.pdf
- 56) Ramos, L., & Luna, P. (2014). "DISEÑO DE UN SISTEMA FOTOVOLTAICO INTEGRADO A LA RED PARA EL AREA DE ESTACIONAMIENTO DE LA UNIVERSIDAD TECNOLOGICA DE SALAMANCA". (*Tesis de pregrado*). Obtenido de https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/521/1/Tesis%20Rafael%20Luna%20Puente%2C%20Humberto%20Ramos%20L%C3%B3pez.pdf
- 57) Reyes, A. (2019). Propuesta de uso de energía solar para el suministro de energía eléctrica y mejora de la eficiencia energética en la Universidad ESAN. (*Tesis de Doctorado*). Obtenido de https://repositorio.esan.edu.pe/handle/20.500.12640/1668
- 58) Román , J., & Villacrés , K. (2019). *Metodología para la Evaluación del Recurso Eólico*. Obtenido de http://revistaenergia.cenace.org.ec/index.php/cenace/article/download/212/203/
- 59) Romero, P. (2018). ESTUDIO DE ALTERNATIVAS PARA LA IMPLANTACIÓN DE UNA PLANTA FOTOVOLTAICA EN ILLORA (GRANADA). (*Tesis de Pregrado*). Obtenido de https://repositorio.unican.es/xmlui/bitstream/handle/10902/14855/PRG.pdf?sequence =1&isAllowed=y
- 60) Ruíz, J., Peña, J., & Fernández, A. (2013). Reinstalación del Generador Eólico y Evaluación Técnica del Sistema Híbrido para Producción de Energía Eléctrica en el Laboratorio de Fuentes Renovables de Energía ESPOL. (*Tesis de pregrado*). Obtenido de http://www.dspace.espol.edu.ec/xmlui/bitstream/handle/123456789/30938/D-79790.pdf?sequence=-1&isAllowed=y
- 61) Sanchez, M. (2019). Sistema fotovoltaico conectado a la red para el centro de salud "El Arenal" en el centro poblado El Arenal, distrito El Arenal, Paita Piura. (*Tesis de pregrado*).

 Obtenido de http://repositorio.unprg.edu.pe/bitstream/handle/UNPRG/8040/BC-4442%20SANCHEZ%20MIRANDA.pdf?sequence=1&isAllowed=y

- 62) Schneider Electric. (2019). *Interruptor diferencial*. Obtenido de https://www.se.com/pe/es/product/A9R91240/acti-9-iid---rccb---2p---40a---30ma---type-a-si/
- 63) SENAMHI. (2019). *Datos hidrometeorologicos a nivel nacional*. Obtenido de https://www.senamhi.gob.pe/?&p=estaciones
- 64) (2013).SISTEMA SOLAR FOTOVOLTAICO DE CONEXIÓN A RED EN EL CENTRO MATERNO INFANTIL DE LA UNIVERSIDAD DE PIURA. (*Tesis de pregrado*). Universidad de Piura. Obtenido de https://pirhua.udep.edu.pe/bitstream/handle/11042/1762/IME_172.pdf
- 65) statista. (28 de Noviembre de 2019). *Los países que más contaminan el aire*. Obtenido de https://es.statista.com/grafico/9662/emisiones-de-dioxido-de-carbono-por-paises-en-2018/
- 66) Torrecilla Arroyo, G. (2014). PROYECTO DE IMPLANTACIÓN DE UN SISTEMA DE RECARGA DE MOTOS ELÉCTRICAS CON PLACAS FOTOVOLTAICAS Y PIEZOELÉCTRICOS. (*Tesis de Pregrado*). Obtenido de https://upcommons.upc.edu/bitstream/handle/2099.1/22779/gabriel.torrecilla_94304.p df?sequence=1&isAllowed=y
- 67) UDLAP. (2006). Obtenido de CONTROL DIGITAL PARA CONVERTIDOR MULTINIVEL ALIMENTADO CON ENERGÍA SOLAR: http://catarina.udlap.mx/u_dl_a/tales/documentos/meie/martinez_h_d/capitulo6.pdf
- 68) Ujaen. (2015). sistemas fotovoltaicos conectados a red. Obtenido de http://www.ujaen.es/investiga/solar/07cursosolar/home_main_frame/08_lecciones/02 _leccion/www/Sist_fotovol_conectados_red.htm#:~:text=Un%20Sistema%20Fotovol taico%20Conectado%20a,con%20la%20red%20el%C3%A9ctrica%20convencional.
- 69) Valencia, H. (2013). FUNDAMENTOS DE ELECTRÓNICA INDUSTRIAL. Obtenido de https://repository.upb.edu.co/bitstream/handle/20.500.11912/74/Fundamentos%20de %20Electr%C3%B3nica%20Industrial%20-%20Hern%C3%A1n%20Valencia%20Gall%C3%B3n.pdf?sequence=1
- 70) Vasquez, D. (2019). Microgeneración distribuida con sistema fotovoltaico para autoconsumo en la Municipalidad de Picsi en el departamento de Lambayeque. (*Tesis de pregrado*). Obtenido de https://alicia.concytec.gob.pe/vufind/Record/UPRG_dab1360bc926fee3633ee35b05d 98ab7
- 71) Vásquez, R. (2019). Obtenido de Evaluación de la implementación de energías renovables con electrificación fotovoltaica para mejorar la calidad de vida del poblador del Distrito de San Rafael, Provincia de Ambo, Región Huánuco 2018: http://repositorio.undac.edu.pe/bitstream/undac/989/1/T026_71380851_T.pdf
- 72) Von, H. (2001). CONVENCIÓN MARCO DE LAS NACIONES UNIDAS SOBRE CAMBIO CLIMÁTICO UNFCCC. Obtenido de

- https://www.portalces.org/sites/default/files/migrated/docs/IAvH_-_Analisis_a_la_luz_de_la_CMNUCC_sobre_diversidad_biologica.pdf
- 73) Wilmer, L. (2020). Propuesta de Diseño de un Sistema de Energía Solar Fotovoltaica. Caso de Aplicación en Casa Comunal de Cooperativa Los Paracaidistas en la Ciudad de Guayaquil. (*Tesis de Pregrado*). Obtenido de http://repositorio.ucsg.edu.ec/bitstream/3317/14365/1/T-UCSG-PRE-TEC-IEM-248.pdf

ANEXOS

ANEXO N°01. DATA DE LA TEMPERATURA DE LA ESTACIÓN METEOROLÓGICA LAMBAYEQUE-SENAMHI

- * Datos sin control de calidad.
- * El uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

- * S/D = SIn Datos.
- *T = Trazas (Precipitación < 0.1 mm/día).

Estación : LAMBAYEQUE

Departamento : LAMBAYEQUE Provincia : LAMBAYEQUE Distrito : LAMBAYEQUE Latitud : 6'44'3.75" Longitud : 79"54'35.4" Altitud : 18 msnm.

Tipo .	CP - meteorologica	coaigo .	100108	
	TEMPERATUR	A (°C)		PRECIPITACIÓN (mm/dla)
AÑO/MES/DÍA	MAX	MIN	HUMEDAD RELATIVA (%)	TOTAL
01/01/2019	28.6	20.3	79.4	0
02/01/2019	27.8	20.5	79.1	0
03/01/2019	28.4	21.1	80.9	0
04/01/2019	29.4	20.3	79.8	0
05/01/2019	29.5	21.3	81.5	0
06/01/2019	28.8	22.1	S/D	0
07/01/2019	30.1	22.3	76.6	0
08/01/2019	28.2	23.2	76.7	0
09/01/2019	30.3	22.8	75.1	0
10/01/2019	30.8	23.2	74.7	0
11/01/2019	31.6	23.3	76.7	0
12/01/2019	30.2	21.7	S/D	0
13/01/2019	30.2	21.2	79.1	0
14/01/2019	27.4	21.2	77.5	0
15/01/2019	29.4	21.8	74.1	0
16/01/2019	29.7	21.2	78.6	0
17/01/2019	29	21.4	74.6	0
18/01/2019	29.6	21.7	71.9	0
19/01/2019	30.6	21.5	75.2	0
20/01/2019	29.5	20.6	77.4	0
21/01/2019	31.1	21.1	75.4	0
22/01/2019	29.6	21.5	72.1	0
23/01/2019	30.4	21.5	72.2	0
24/01/2019	29.1	21.8	78.6	0
25/01/2019	30.6	21.9	76	0
26/01/2019	30.2	21.5	79.7	0
27/01/2019	30	22	82.7	0
28/01/2019	31.5	23.3	75.9	0
29/01/2019	33	23.8	78	0
30/01/2019	31.3	23.3	78.3	0
31/01/2019	30.8	22.7	77.4	0

- * Datos sin control de calidad.
- * 🗄 uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

- * S/D = SIn Datos.
- *T = Trazas (Precipitación < 0.1 mm/día).

Estación: LAMBAYEQUE

Departamento: LAMBAYEQUE Provincia: LAMBAYEQUE Distrito: LAMBAYEQUE Latitud: 6'44'3.75" Longitud: 79'54'35.4" Altitud: 18 msnm.

Tipo:	CP - Meteorologica	Coalgo :	100108	
	TEMPERATUR	A ("C)		PRECIPITACIÓN (mm/dla)
AÑO / MES / DÍA	MAX	MIN	HUMEDAD RELATIVA (%)	TOTAL
01/05/2019	25.5	20	86.8	0
02/05/2019	26.2	19.1	85.9	0
03/05/2019	27.2	19.1	83.4	0
04/05/2019	28.8	19.6	79.6	0
05/05/2019	27.4	20.4	85.2	0
06/05/2019	27.4	20.7	87.1	0
07/05/2019	26.4	20.4	86	0
08/05/2019	27.1	18.9	85.1	0
09/05/2019	26.4	19.9	87	0
10/05/2019	27.2	19.8	77.9	0
11/05/2019	26.6	19.4	77.5	0
12/05/2019	29.1	19.5	78.1	0
13/05/2019	26.7	20	83.1	0
14/05/2019	27.4	20.5	83.5	0
15/05/2019	26.4	20	83.7	0
16/05/2019	26	19.6	81	0
17/05/2019	26.7	18.6	80.4	0
18/05/2019	27.2	17.8	78.5	0
19/05/2019	27	18.3	78	0
20/05/2019	25.2	19.1	78.4	0
21/05/2019	25.9	18.6	81.4	0.1
22/05/2019	26.4	19.1	81.7	0
23/05/2019	25.7	18	79.3	0
24/05/2019	27.3	18.6	79.4	0
25/05/2019	27.4	19.2	76.5	0
26/05/2019	26.5	18.3	S/D	0
27/05/2019	26.1	18.1	77.9	0
28/05/2019	26.6	18.6	74.1	0
29/05/2019	27	18	79.6	0
30/05/2019	27.6	17.2	79.2	0
31/05/2019	29.8	18.6	76.2	0

- * Datos sin control de calidad.
- * El uso de estos datos será de entera responsabilidad del usuario.

Levenda:

- * S/D = Sin Datos.
- * T = Trazas (Precipitación < 0.1 mm/día).

Estación : LAMBAYEQUE

Departamento : LAMBAYEQUE Provincia : LAMBAYEQUE Distrito : LAMBAYEQUE Latitud : 6'44'3.75" Longitud : 79"54"35.4" Altitud : 18 msnm.

Tipo:	CP - Meteorológica	Código :	106108	
	TEMPERATUR	A ("C)		PRECIPITACIÓN (mm/dia)
AÑO/MES/DÍA	MAX	MIN	HUMEDAD RELATIVA (%)	TOTAL
01/06/2019	24.8	18	84.5	0
02/06/2019	25.1	18.2	78.3	0
03/06/2019	24.8	17.7	82.2	0
04/06/2019	25.8	17.1	79.2	0
05/06/2019	25.6	17.1	77.4	0
06/06/2019	26.6	16.2	80.8	0
07/06/2019	27.5	16.4	76.6	0
08/06/2019	25.4	17	80.5	0
09/06/2019	24.6	18	83	0
10/06/2019	24.8	17.3	83.7	0
11/06/2019	25.5	18.4	82.8	0
12/06/2019	24.3	17.9	80.2	0
13/06/2019	24.7	17.5	76.4	0
14/06/2019	24.4	17.4	76.9	0
15/06/2019	25.8	17.9	77	0
16/06/2019	24.4	18.1	80.4	0
17/06/2019	24.1	17.5	80.9	0
18/06/2019	23.2	17.6	81.5	0
19/06/2019	24.6	17	80.1	0
20/06/2019	22.8	15.5	84.6	0
21/06/2019	21.9	16.6	85.2	0
22/06/2019	24.1	15.1	80.4	0
23/06/2019	23.5	15.8	82.1	0
24/06/2019	24.5	15.9	78.6	0
25/06/2019	24.8	16.7	79.2	0
26/06/2019	24	16.7	80.2	0
27/06/2019	24	16.5	79.6	0
28/06/2019	23.8	16.6	80.6	0
29/06/2019	22.4	17.5	85.6	0
30/06/2019	24.3	16.8	80.6	0

- * Datos sin control de calidad.
- * El uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

- * S/D = Sin Datos.
- * T = Trazas (Precipitación < 0.1 mm/día).

Estación : LAMBAYEQUE

Departamento : LAMBAYEQUE Provincia : LAMBAYEQUE Distrito : LAMBAYEQUE Latitud : 6'44'3.75" Longitud : 79'54'35.4" Altitud : 18 msnm.

	TEMPERATUR	A (°C)		PRECIPITACIÓN (mm/dia)
AÑO/MES/DÍA	MAX	MIN	HUMEDAD RELATIVA (%)	TOTAL.
01/07/2019	23.9	17	82.5	0
02/07/2019	23.2	17.2	8/0	0
03/07/2019	23.3	10.0	81.2	0
04/07/2019	24	16.1	79.1	0
05/07/2019	24.7	17	79.6	0
06/07/2019	25.2	17.1	79.8	0
07/07/2019	24.1	16.9	84.4	0.3
08/07/2019	22.9	16.3	85.1	0
09/07/2019	23.2	10.9	79.8	0
10/07/2019	23.1	15.5	81.7	0
11/07/2019	22.9	14.5	82.6	0
12/07/2019	22.8	16	87.7	0
13/07/2019	21.6	17.2	85.5	0
14/07/2019	21.3	16.6	81.4	0
15/07/2019	23.2	10.5	83.6	0
16/07/2019	22.4	16	86.2	0
17/07/2019	22.1	16.3	84	0
18/07/2019	19.6	16.8	85.8	0
19/07/2019	21.6	15.4	78.4	0
20/07/2019	23.2	14.2	80.8	0
21/07/2019	22.2	15.4	82.5	0
22/07/2019	23.2	16.5	81.7	0
23/07/2019	22.4	16.3	81.8	0
24/07/2019	22.6	16.3	83.6	0
25/07/2019	21.2	16.1	83.4	0
26/07/2019	21	15.5	84.1	0
27/07/2019	20.9	15.5	83.8	0
28/07/2019	19.8	15.3	89	0
29/07/2019	18.8	15.1	85.4	0
30/07/2019	19.7	14.3	81.2	0
31/07/2019	21.6	10.9	8:1	0

- * Datos sin control de calidad.
- * 🗄 uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

- * S/D = Sin Datos.
- *T = Trazas (Precipitación < 0.1 mm/día).

Estación : LAMBAYEQUE

Departamento : LAMBAYEQUE Provincia : LAMBAYEQUE Distrito : LAMBAYEQUE Latitud : 6"44"3.75" Longitud : 79"54"35.4" Altitud : 18 msnm.

TIPO:	CP - Meteorologica	coalgo :	100108	
	TEMPERATUR	A ("C)		PRECIPITACIÓN (mm/dla)
AÑO/MES/DÍA	MAX	MIN	HUMEDAD RELATIVA (%)	TOTAL
01/08/2019	22.1	12.2	81.3	0
02/08/2019	23.5	14.1	80.8	0
03/08/2019	22.6	15.2	84.4	0
04/08/2019	21.4	15	86	0
05/08/2019	22.3	15.6	82.7	0
06/08/2019	20.5	15.8	81.1	0
07/08/2019	20.5	14.9	81.2	0
08/08/2019	20.8	15.8	78.4	0
09/08/2019	21.5	15.5	82.1	0
10/08/2019	20.8	14.5	82	0
11/08/2019	21.7	14.4	78.2	0
12/08/2019	21.5	14.7	79.8	0
13/08/2019	21.6	14.2	83.6	0
14/08/2019	21.6	15.5	85.9	0
15/08/2019	22	15	85.8	0
16/08/2019	20.2	16	88	0
17/08/2019	20.4	15.8	88	0
18/08/2019	21.1	16.2	85	0
19/08/2019	21.3	16.1	87.1	0
20/08/2019	21.7	15.3	83.9	0
21/08/2019	22.3	15.2	84.7	0
22/08/2019	21.4	15.7	85.8	0
23/08/2019	20.8	15.8	87.8	0
24/08/2019	20.6	15.7	87.8	0
25/08/2019	21.5	16	83	0
26/08/2019	21.6	15.2	83.4	0
27/08/2019	21.3	15.5	86.1	0
28/08/2019	21	15.7	87.9	0
29/08/2019	21.9	12.1	81.4	0
30/08/2019	22.4	16.7	82.4	0
31/08/2019	22.4	16.3	84.3	0

Leyenda:

Estación : LAMBAYEQUE

Departamento : LAMBAYEQUE Provincia : LAMBAYEQUE Distrito : LAMBAYEQUE
Latitud : 6'44'3.75" Longitud : 79'54'35.4" Altitud : 18 msnm.

npo.	CF - Meteorologica	courge .	100100	
	TEMPERATUR	A ("C)		PRECIPITACIÓN (mm/dla)
AÑO/MES/DÍA	MAX	MIN	HUMEDAD RELATIVA (%)	TOTAL
01/09/2019	22.3	15.2	85.4	0
02/09/2019	22.3	16.4	81.6	0
03/09/2019	22.4	16.6	80.8	0
04/09/2019	23.4	16.8	78.2	0
05/09/2019	23.2	15.5	80.3	0
06/09/2019	22.9	15.1	78.3	0
07/09/2019	22.4	15.6	80.2	0
08/09/2019	22	15.3	79	0
09/09/2019	22.2	15.2	81.7	0
10/09/2019	22.5	14.3	79.5	0
11/09/2019	22.6	15.7	S/D	0
12/09/2019	22.4	16	77.9	0
13/09/2019	22.5	15.6	79.2	0
14/09/2019	22.4	15.9	78	0
15/09/2019	22.5	14.8	80.8	0
16/09/2019	22.8	15.5	80.8	0
17/09/2019	23.2	15.6	79.5	0
18/09/2019	21.3	15.1	81.9	0
19/09/2019	22.6	15.7	79.5	0
20/09/2019	21.8	15.6	84.4	0
21/09/2019	21.6	15.9	80.6	0
22/09/2019	22.5	15.8	79.7	0
23/09/2019	21.7	15.7	85.4	0
24/09/2019	21.8	15.9	85.2	0
25/09/2019	22.1	15.4	80.7	0
26/09/2019	22.2	15.3	81.4	0
27/09/2019	22.1	15.6	82.9	0
28/09/2019	22.5	15.6	84.1	0
29/09/2019	22.6	15.3	86.4	0
30/09/2019	21.8	15.8	85	0

^{*} Datos sin control de calidad.

^{* 🗄} uso de estos datos será de entera responsabilidad del usuario.

^{*} S/D = Sin Datos.

^{*}T = Trazas (Precipitación < 0.1 mm/día).

- * Datos sin control de calidad.
- * 🗄 uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

- * S/D = SIn Datos.
- *T = Trazas (Precipitación < 0.1 mm/día).

Estación : LAMBAYEQUE

Departamento : LAMBAYEQUE Provincia : LAMBAYEQUE Distrito : LAMBAYEQUE
Latitud : 6'44'3.75" Longitud : 79'54'35.4" Altitud : 18 msnm.

TIPO:	CP - Meteorologica	Coalgo :	100108	
	TEMPERATUR	A ("C)		PRECIPITACIÓN (mm/dia)
AÑO/MES/DÍA	MAX	MIN	HUMEDAD RELATIVA (%)	TOTAL
01/10/2019	21.9	15.5	85.6	0
02/10/2019	23.4	15.9	S/D	0
03/10/2019	23.8	16.1	84.4	0
04/10/2019	21.4	16	79.6	0
05/10/2019	21.2	16.1	83.1	0
06/10/2019	22.6	16	79.4	0
07/10/2019	22.6	15.9	81.4	0
08/10/2019	22.5	15.2	80.6	0
09/10/2019	22.9	15.6	78.5	0
10/10/2019	23.1	16.3	81	0
11/10/2019	21.8	13.8	83	0
12/10/2019	22.8	14.6	79.2	0
13/10/2019	23.8	15.8	78.7	0
14/10/2019	23.8	15.7	76.9	0
15/10/2019	24.7	16.1	78.7	0
16/10/2019	23.8	16.8	80.4	0.5
17/10/2019	23.6	16.8	80.6	0
18/10/2019	23.6	17.1	81.4	0
19/10/2019	24.4	17.2	80.1	0
20/10/2019	22.8	16.9	79.7	0
21/10/2019	23.2	15.6	75.8	0.4
22/10/2019	23.3	16.3	78.7	0
23/10/2019	24.5	16.7	80.7	0
24/10/2019	23.2	15.8	80.6	0
25/10/2019	23	15.7	81.4	0
26/10/2019	23.5	15.5	76.6	0
27/10/2019	23.7	15.6	75.9	0
28/10/2019	23.2	16.3	79.5	0
29/10/2019	23.1	15.7	80.5	0
30/10/2019	23.9	16.5	79	0
31/10/2019	25	17.5	80.9	0

Leyenda:

Estación : LAMBAYEQUE

Departamento : LAMBAYEQUE Provincia : LAMBAYEQUE Distrito : LAMBAYEQUE Latitud : 6"44"3.75" Longitud : 79"54"35.4" Altitud : 18 msnm.

Tipo .	CP - Meteorologica	coalgo :	100108	
	TEMPERATUR	A ("C)		PRECIPITACIÓN (mm/dla)
AÑO/MES/DÍA	MAX	MIN	HUMEDAD RELATIVA (%)	TOTAL
01/11/2019	23.3	17.1	81.4	0
02/11/2019	24.2	17.2	80.9	0
03/11/2019	24.4	17.3	79.5	0
04/11/2019	23.6	16.5	77.6	0
05/11/2019	24.2	17.2	79.3	0
06/11/2019	24	17.3	78.6	0
07/11/2019	24.2	17.1	81.2	0
08/11/2019	24.8	16.5	79	0
09/11/2019	24.2	17.6	81	0
10/11/2019	24.7	17.7	80.6	0
11/11/2019	24.8	17.4	83.3	0
12/11/2019	24.6	18.1	81.8	0
13/11/2019	24.7	17	81.1	0
14/11/2019	24.8	16.9	80.2	0
15/11/2019	24.9	16.7	83.8	0
16/11/2019	24.3	17.5	81.1	0
17/11/2019	24.2	17.5	83.6	0
18/11/2019	21.8	17.6	84.5	0
19/11/2019	22.5	18.3	83.5	0
20/11/2019	25.5	15.3	81.5	0
21/11/2019	25.2	17.7	77.5	0
22/11/2019	24.1	19.4	82.4	0
23/11/2019	23.6	17.2	81.8	0
24/11/2019	25.4	18.9	79.9	0
25/11/2019	24.4	19.5	84.3	0
26/11/2019	24.4	18.9	83	0
27/11/2019	26.8	17.9	81.3	0
28/11/2019	26.4	19.8	82.4	0
29/11/2019	25.4	18.6	83.8	0
30/11/2019	25.5	18.5	84.2	0

^{*} Datos sin control de calidad.

^{* 🗄} uso de estos datos será de entera responsabilidad del usuario.

^{*} S/D = SIn Datos.

^{*}T = Trazas (Precipitación < 0.1 mm/día).

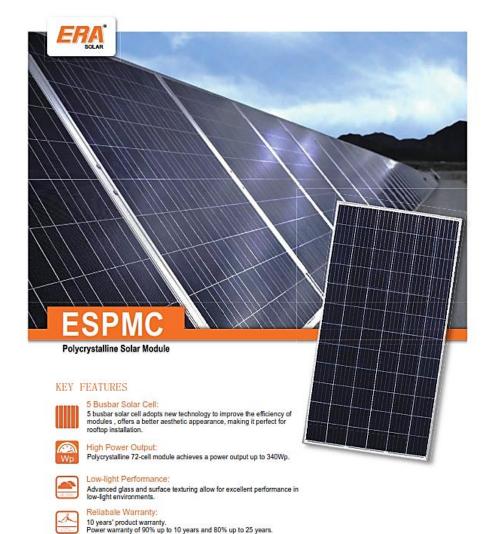
* Datos sin control de calidad.

* 🗄 uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

* S/D = Sin Datos.

*T = Trazas (Precipitación < 0.1 mm/día).

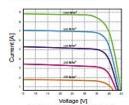

Estación : LAMBAYEQUE

Departamento : LAMBAYEQUE Provincia : LAMBAYEQUE Distrito : LAMBAYEQUE

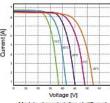
Latitud : 6"44"3.75" Longitud : 79"54"35.4" Altitud : 18 m snm.

### ANO MES CÎA MAX MIN HUMEDAD RELATIVA (%) TOTAL ### O1/11/2/2019 26 19.4 79 0 ### O2/12/2019 25.1 19.5 83.4 0 ### O3/12/2019 26.6 19.3 82.9 0 ### O4/12/2019 26.8 19.7 SID 0 ### O4/12/2019 26.8 19.7 SID 0 ### O4/12/2019 26.3 20 82.4 0 ### O7/12/2019 26.8 19.7 80.4 0 ### O6/12/2019 26.8 19.7 80.4 0 ### O6/12/2019 26.5 19.6 81 0 ### O6/12/2019 26.5 19.6 81 0 ### O6/12/2019 26.8 19.6 80.4 0 ### O6/12/2019 26.8 19.6 80.4 0 ### O6/12/2019 26.1 19.9 80.6 0 ### O6/12/2019 27.1 20.3 78.7 0 ### O6/12/2019 27.3 19.5 76.8 0 ### O6/12/2019 25.6 19.2 82.1 0 ### O6/12/2019 26.4 18.7 81.1 0 ### O6/12/2019 26.5 20.3 77.9 0 ### O6/12/2019 26.6 20.3 81.2 0 ### O6/12/2019 26.6 20.3 81.2 0 ### O6/12/2019 27.4 20.7 79.5 0 ### O6/12/2019 27.5 20.4 79.4 0 ### O6/12/2019 27.5 20.1 80.6 0 ### O6/12/2019 27.5 20.1 80.6 0 ### O6/12/2019 27.5 21.1 75.6 1 ### O6/12/2019 27.5 21.1 75.6 1 ### O6/12/2019 28.9 20.1 80.3 1.1 ### O6/12/2019 28.9 20.1 80.3 1.1 ### O6/12/2019 26.2 20 89.1 0 ### O6/12/2019 26.5 20.9 82.6 0	Tipo :	CP - Meteorológica	Código :	106108	
01/12/2019 26 19.4 79 0 02/12/2019 25.1 19.5 83.4 0 03/12/2019 26.6 19.3 82.9 0 04/12/2019 26.8 19.7 S/D 0 05/12/2019 27.2 19.9 77.2 0 06/12/2019 26.8 19.7 80.4 0 07/12/2019 26.8 19.7 80.4 0 08/12/2019 27.2 19.4 78.8 0 09/12/2019 26.5 19.6 81 0 09/12/2019 26.5 19.6 80.4 0 10/12/2019 26.8 19.6 80.4 0 11/12/2019 26.1 19.9 80.6 0 12/12/2019 27.1 20.3 78.7 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 26.4		TEMPERATUR	A ("C)		PRECIPITACIÓN (mm/dla)
02/12/2019 25.1 19.5 83.4 0 03/12/2019 26.6 19.3 82.9 0 04/12/2019 26.8 19.7 8/D 0 05/12/2019 27.2 19.9 77.2 0 06/12/2019 26.3 20 82.4 0 07/12/2019 26.8 19.7 80.4 0 08/12/2019 27.2 19.4 78.8 0 09/12/2019 26.5 19.6 81 0 09/12/2019 26.8 19.6 80.4 0 10/12/2019 26.8 19.6 80.4 0 11/12/2019 26.1 19.9 80.6 0 11/12/2019 26.1 19.9 80.6 0 11/12/2019 27.1 20.3 78.7 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 26.4 <t< th=""><th>AÑO/MES/DÍA</th><th>MAX</th><th>MIN</th><th>HUMEDAD RELATIVA (%)</th><th>TOTAL</th></t<>	AÑO/MES/DÍA	MAX	MIN	HUMEDAD RELATIVA (%)	TOTAL
03/12/2019 26.6 19.3 82.9 0 04/12/2019 26.8 19.7 SJD 0 05/12/2019 27.2 19.9 77.2 0 06/12/2019 26.3 20 82.4 0 07/12/2019 26.8 19.7 80.4 0 08/12/2019 27.2 19.4 78.8 0 09/12/2019 26.5 19.6 81 0 10/12/2019 26.8 19.6 80.4 0 11/12/2019 26.8 19.6 80.4 0 11/12/2019 26.1 19.9 80.6 0 12/12/2019 26.1 19.9 80.6 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 26.4 18.7 81.1 0 16/12/2019 26.4 <t< td=""><td>01/12/2019</td><td>26</td><td>19.4</td><td>79</td><td>0</td></t<>	01/12/2019	26	19.4	79	0
04/12/2019 26.8 19.7 SID 0 05/12/2019 27.2 19.9 77.2 0 06/12/2019 26.3 20 82.4 0 07/12/2019 26.8 19.7 80.4 0 08/12/2019 27.2 19.4 78.8 0 09/12/2019 26.5 19.6 81 0 10/12/2019 26.8 19.6 80.4 0 11/12/2019 26.1 19.9 80.6 0 11/12/2019 26.1 19.9 80.6 0 12/12/2019 27.3 19.5 76.8 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 25.6 19.2 82.1 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.4 18.7 81.1 0 18/12/2019 26.6 <t< td=""><td>02/12/2019</td><td>25.1</td><td>19.5</td><td>83.4</td><td>0</td></t<>	02/12/2019	25.1	19.5	83.4	0
05/12/2019 27.2 19.9 77.2 0 06/12/2019 26.3 20 82.4 0 07/12/2019 26.8 19.7 80.4 0 08/12/2019 27.2 19.4 78.8 0 09/12/2019 26.5 19.6 81 0 10/12/2019 26.8 19.6 80.4 0 11/12/2019 26.1 19.9 80.6 0 12/12/2019 27.1 20.3 78.7 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 25.6 19.2 82.1 0 15/12/2019 26.4 18.7 81.1 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 26.6 20.3 81.2 0 20/12/2019 27.4 <	03/12/2019	26.6	19.3	82.9	0
06/12/2019 26.3 20 82.4 0 07/12/2019 26.8 19.7 80.4 0 08/12/2019 27.2 19.4 78.8 0 09/12/2019 26.5 19.6 81 0 10/12/2019 26.8 19.6 80.4 0 11/12/2019 26.1 19.9 80.6 0 12/12/2019 27.1 20.3 78.7 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 25.6 19.2 82.1 0 15/12/2019 25.6 19.2 82.1 0 15/12/2019 26.4 18.7 81.1 0 16/12/2019 26.6 18.5 75.7 0 18/12/2019 26.6 20.3 77.9 0 18/12/2019 26.8 20.2 81.9 0 21/12/2019 27 <td< td=""><td>04/12/2019</td><td>26.8</td><td>19.7</td><td>S/D</td><td>0</td></td<>	04/12/2019	26.8	19.7	S/D	0
07/12/2019 26.8 19.7 80.4 0 08/12/2019 27.2 19.4 78.8 0 09/12/2019 26.5 19.6 81 0 10/12/2019 26.8 19.6 80.4 0 11/12/2019 26.1 19.9 80.6 0 12/12/2019 27.1 20.3 78.7 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 26.4 18.7 81.1 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 <	05/12/2019	27.2	19.9	77.2	0
08/12/2019 27.2 19.4 78.8 0 09/12/2019 26.5 19.6 81 0 10/12/2019 26.8 19.6 80.4 0 11/12/2019 26.1 19.9 80.6 0 12/12/2019 27.1 20.3 78.7 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 28.5 18.4 S/D 0 16/12/2019 26.4 18.7 81.1 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 28.5 20.3 77.9 0 19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 <t< td=""><td>06/12/2019</td><td>26.3</td><td>20</td><td>82.4</td><td>0</td></t<>	06/12/2019	26.3	20	82.4	0
09H2/2019 26.5 19.6 81 0 10H2/2019 26.8 19.6 80.4 0 11H2/2019 26.1 19.9 80.6 0 12H2/2019 27.1 20.3 78.7 0 13H2/2019 27.3 19.5 76.8 0 14H2/2019 25.6 19.2 82.1 0 15H2/2019 28.5 18.4 S/D 0 16H2/2019 26.4 18.7 81.1 0 17H2/2019 26.6 18.5 75.7 0 18H2/2019 26.6 20.3 81.2 0 20H2/2019 26.6 20.3 81.2 0 20H2/2019 26.8 20.2 81.9 0 21H2/2019 27 20.4 79.4 0 22H2/2019 27.4 20.7 79.5 0 23H2/2019 27 20 82.6 0 24H2/2019 26.7 19.6	07/12/2019	26.8	19.7	80.4	0
10/12/2019 26.8 19.6 80.4 0 11/12/2019 26.1 19.9 80.6 0 12/12/2019 27.1 20.3 78.7 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 28.5 18.4 S/D 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 26.6 18.5 75.7 0 18/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.7 19.6 77.6 0 25/12/2019 26.7	08/12/2019	27.2	19.4	78.8	0
11/12/2019 26.1 19.9 80.6 0 12/12/2019 27.1 20.3 78.7 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 28.5 18.4 8/D 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 26.6 20.3 77.9 0 19/12/2019 26.6 20.3 77.9 0 19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.6 20.3 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27 20.4 79.4 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19	09/12/2019	26.5	19.6	81	0
12/12/2019 27.1 20.3 78.7 0 13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 28.5 18.4 S/D 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 28.5 20.3 77.9 0 19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.5 19.8 77.7 0 28/12/2019 27.5 21.1 75.6	10/12/2019	26.8	19.6	80.4	0
13/12/2019 27.3 19.5 76.8 0 14/12/2019 25.6 19.2 82.1 0 15/12/2019 28.5 18.4 3/D 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 28.5 20.3 77.9 0 19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 27.5 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.5 29.8 77.7 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3	11/12/2019	26.1	19.9	80.6	0
14/12/2019 25.6 19.2 82.1 0 15/12/2019 28.5 18.4 9/D 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 28.5 20.3 77.9 0 19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1	12/12/2019	27.1	20.3	78.7	0
15/12/2019 28.5 18.4 S/D 0 16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 28.5 20.3 77.9 0 19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.2 20.1 80.6 0 25/12/2019 27.5 19.8 77.7 0 26/12/2019 27.5 19.8 77.7 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9	13/12/2019	27.3	19.5	76.8	0
16/12/2019 26.4 18.7 81.1 0 17/12/2019 26.6 18.5 75.7 0 18/12/2019 28.5 20.3 77.9 0 19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	14/12/2019	25.6	19.2	82.1	0
17/12/2019 26.6 18.5 75.7 0 18/12/2019 28.5 20.3 77.9 0 19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	15/12/2019	28.5	18.4	S/D	0
18/12/2019 28.5 20.3 77.9 0 19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	16/12/2019	26.4	18.7	81.1	0
19/12/2019 26.6 20.3 81.2 0 20/12/2019 26.8 20.2 81.9 0 21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	17/12/2019	26.6	18.5	75.7	0
20H2/2019 26.8 20.2 81.9 0 21H2/2019 27 20.4 79.4 0 22H2/2019 27.4 20.7 79.5 0 23H2/2019 27 20 82.6 0 24H2/2019 26.2 20.1 80.6 0 25H2/2019 26.7 19.6 77.6 0 26H2/2019 27.5 19.8 77.7 0 27H2/2019 27.6 20.2 80.2 0 28H2/2019 27.5 21.1 75.6 1 29H2/2019 28.9 20.1 80.3 1.1 30H2/2019 26.2 20 89.1 0	18/12/2019	28.5	20.3	77.9	0
21/12/2019 27 20.4 79.4 0 22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	19/12/2019	26.6	20.3	81.2	0
22/12/2019 27.4 20.7 79.5 0 23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	20/12/2019	26.8	20.2	81.9	0
23/12/2019 27 20 82.6 0 24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	21/12/2019	27	20.4	79.4	0
24/12/2019 26.2 20.1 80.6 0 25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	22/12/2019	27.4	20.7	79.5	0
25/12/2019 26.7 19.6 77.6 0 26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	23/12/2019	27	20	82.6	0
26/12/2019 27.5 19.8 77.7 0 27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	24/12/2019	26.2	20.1	80.6	0
27/12/2019 27.6 20.2 80.2 0 28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	25/12/2019	26.7	19.6	77.6	0
28/12/2019 27.5 21.1 75.6 1 29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	26/12/2019	27.5	19.8	77.7	0
29/12/2019 28.9 20.1 80.3 1.1 30/12/2019 26.2 20 89.1 0	27/12/2019	27.6	20.2	80.2	0
30/12/2019 26.2 20 89.1 0	28/12/2019	27.5	21.1	75.6	1
	29/12/2019	28.9	20.1	80.3	1.1
31/12/2019 28.5 20.9 82.6 0	30/12/2019	26.2	20	89.1	0
	31/12/2019	28.5	20.9	82.6	0

ANEXO N°02. FICHA TÉCNICA DEL PANEL ERA SOLAR 340 Wp

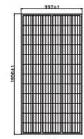

POLYCRYSTALLINE, 72-CELL SERIES

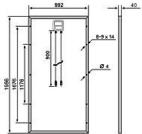
THE STREET PROPERTY.	
Module type: ESPMC	340
Maximum Power(Wp)	340W
Open circuit Voltage(Voc)	46.4V
Short circuit Current(Isc)	9.45A
Maximum Power Voltage(Vm)	38.5V
Maximum Power Current(Im)	5.54A
Module efficiency	17.5%
Maximum Series Fuse	15A
Watts positive tolerance	0-+3%
Number of Diode	3
Standard Test Conditions	1000W/M²,25°C,AM1.5
Maximum System Voltage	1000V/DC
Temperature-Coefficient Isc	+0.05555%/°C
Temperature-Coefficient Uoc	-0.29506%/°C
Temperature-Coefficient Pmpp	-0.380011%°C
Normal Operating Cell Temperature	-40°C+85°C
Load Capacity for the cover of the module (glass)	5400Pa(IEC61215)(snow)
Load Capacity for the front & back of the module	2400Pa(IEC61215)(wind)
Product Certificate	TUV(IEC 61215,IEC 61730),CE, ROHS,PID Resisitant,INMETRO
Company Certificate	ISC9001.ISC14001.ISC18001


Front cover (material / thickness)	low-iron tempered glass / 3.2mm
Backsheet (color)	TPT in white
Cell (quantity / material / dimensions)	72 / Polycrystalline silicon / 156.75x156.75mm
Frame (material / color)	aluminum hollow-chamber frame on each side anodized aluminum alloy / silver
Junction box (protection degree)	>IP68
Cables & Plug connectors	2x900mm / 4mm ² & MC4 compatible
Module Dimensions (L / W / H)	1956x992x40mm
Module Weight	20.9kg
Application class	Class A
Electrical protection class	Class II
Fire safety class	Class C

Container Size	Units/Pallet (PCS)	Weight/Pallet (KG)	Pallet Measurment (mm)	Units/Container (PCS)
20GP	26	570	2000x1130x1120	260
40HO	26	570	2000x1130x1120	627
40110	31	676	2000x1130x1340	022

CURRENT-Y OLTAG E CURY ES:




Module characteristics at constant module temperatures (25°C) and different levels of irradiance.

Module characteristics at different module temperatures and constant module irradiance (1.000 W/m²).

M COULE DIAGRAM:

YEARS

PRODUCT

WARRANTY

YEARS

PERFORMANCE

GUARANTEE 90%

YEARS

PERFORMANCE

GUARANTEE 80%

WATTS

TOLERANCE

ANEXO N°03. FICHA TÉCNICA DE LAS ESTRCUTURAS DE SOPORTE

SUNFER ENERGY STRUCTURES

Instalación en cubierta o suelo

Instalación 1 línea

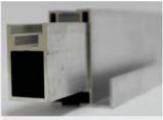
Articulo nº CVE915

Soporte diseñado para instalar 1 fila de módulos fotovoltaicos en vertical sobre cubiertas modificando la inclinación. Inclinación 30°.

Articulo	Capacidad	Tamaño de módulo	Materiales
CVE915 [1x4]	4 Módulos Fotovoltaicos Disponíble de 1 a 20 módulos.	1650x1000x[35,40,45,50]	Aluminio EN AW 6005A T6

Montaje:

Estructura atomillada, regulable...



Presor lateral

Presor Intermedio

Unión gula módulos

Este soporte está disponible en dos versiones:

CVE915, 15°

CVE915. 30 °

Condiciones de diseño:

UNE-EN 1991-1-3:2004 Cargas de nieve. 200 N/m2

UNE-EN 1991-1-4:2007 Cargas de viento. V_b: 29 m/s

Consultar la normativa vigente en el punto de instalación.

Nota:

Previamente, se tiene que comprobar que la subestructura de la cubierta es suficientemente rigida para soportar los paneles fotovoltaicos.

ANEXO N°04. FICHA TÉCNICA DEL INVERSOR FRONIUS DE 8,2 kW

/ Perfect Welding / Solar Energy / Perfect Charging

FRONIUS PRIMO

de dans integrada

/ El inversor comunicativo para la optimización de la gestión de energía

/ Dentro de la gama SnaplNverter y con un rango de potencia entre 3,0 y 8,2 kW, el inversor monofásico Fronius Primo es el equipo perfecto para cubrir las necesidades de cualquier hogar. Gracias a su doble MPPT y su innovador diseño SuperFlex, es capaz de sacar el máximo rendimiento de las instalaciones en tejado. Con el sistema de montaje Snaplnverter, la instalación y mantenimiento son más fáciles que nunca. El inversor Fronius Primo puede completarse de manera opcional con un Fronius Smart Meter, que es un equipo que envía la información más completa al sistema de monitorización, consiguiendo además que el inversor no inyecte energía a la red eléctrica.

Smart Grid

Inteligente GMPT

DATOS TÉCNICOS FRONIUS PRIMO (3.0-1, 3.5-1, 3.6-1, 4.0-1, 4.6-1)

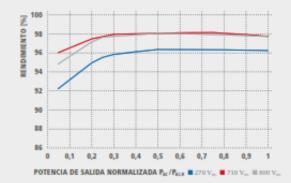
CONTRACTOR OF STREET	12000000		PERMIT	100000000	Section Co.
DATOS DE ENTRADA	PRIMO 3.0-1	PRIMO 3.5-1	PRIMO 3.6-1	PRIMO 4.0-1	PRIMO 4.6-1
Minima curriente de entrada $(I_{+,,+}/I_{i_1+i_2})$			12 A / 12 A		
Maxima corriente de cortocircuite par serie PV (MPF/MPF/)			18 A / 18 A		
Minima tensión de entrada (U _{drata})			80 %		
Trentin CC minima de puesta en servicio (U _{de accusa})			80 V		
Tensión de entrada nominal (U _{des})	7 in y				
Maxima tension de estrada (U _{drass})			L000 V		
Kango de tensión MFF (U _{repp min.} – U _{repp min.})		200 - 800 V		210 - 500 V	240 - 500 V
Número de seguidores MPT			1		
Número de entradas CC			2+2		
Maxima salida del generador FV (P _{demo})	4,3 ksv,	5,1 kW _{pte}	3,3 kW,	6,0 kW _{pto}	6.9 kW _{pm}

DATOS DE SALIDA	PRIMO 3.0-1	PRIMO 3.5-1	PRIMO 3.6-1	PRIMO 4.0-1	PRIMO 4.6-1
Potencia nominal CA (P _m .)	3.000 W	3,500 W	3.680 W	4,000 W	4.600 W
Maxima potencia de valida	1.000 VA	3.300 VA	3.560 VA	4,000 VA	4.600 VA
Corriente de salida CA (L)	13.0 A	13,2 A	16.0 A	17,4 A	20,0 A
Acoplamiento a la red (rango de función)		1 - 5/2	E 210 V / 230 V (180 V -	270.V)	
Precuencia (rango de frecuencia)			50 Hz / 60 Hz [45 - 65 Hz	1	
Coeliciente de distursión no linual	-1%				
Factor de potencia (cm-q _{nis})	TY I	0.85 - Lind. / cap.			

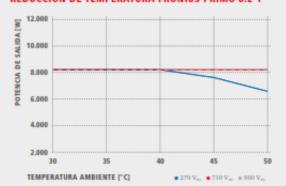
DATOS TÉCNICOS FRONIUS PRIMO (3.0-1, 3.5-1, 3.6-1, 4.0-1, 4.6-1)

DATOS GENERALES	PRIMO 3.0-1	PRIMO 3.5-1	PRIMO 3.6-1	PRIMO 4.0-1	PRIMO 4.6-1	
Dimensiones (altura x anchura x profundidad)		645 x 431 x 204 mm				
Pero			21,5 kg			
Tipo de protección			117.65			
Clase de protección			1			
Categoría de sobretensión (CC / CA) 1			2/3			
Consumo nocturno		<1W				
Concepto de inversor			Sin transformador			
Kefrigeración		1	tefrigeración de aire regula	da		
Instalación			instalación interior y exteri	DE		
Margen de temperatura ambiente			-40 - +53 °C			
Humedad de aire admisible			0 - 100 %			
Máxima altitud		4.000 m				
Tecnología de conexión CC		Conexión de 4x CC+ y 4x CC- bornes roscados 2,5 - 16 mm²				
Tecnología de conexión principal		Conexión de	3 polos CA bornes roscado	2.5 - 16 mm ²		
Certificados y cumplimiento de normas	DIN V VDE 0126-1-1/A1	IEC 62109-1/-2, IEC 621	16, IEC 61727, AS 4777-2,	AS 4777-3, G83/2, G59/3,	CEI 0-21, VDE AR N 410	

RENDIMIENTO	PRIMO 3.0-1	PRIMO 3.5-1	PRIMO 3.6-1	PRIMO 4.0-1	PRIMO 4.6-1
Máximo rendimiento	97,9 %	98,0 %	98,0 %	98,0 %	98,0 %
Rendimiento europeo (17111)	96,1 %	96,8 %	96,876	97,0 %	97,0 %
η con 5 % P _{me} 2	80,8 / 82,5 / 82,5 %	80,8 / 82,5 / 82,5 %	80,8 / 82,5 / 82,5 %	80,8 / 82,3 / 82,3 %	80,8 / 82,5 / 82,5 %
η con 10 % P _{m,e} ²	84,1 / 86,3 / 86,1 %	86,3 / 93,6 / 91,8 %	86,3 / 93,6 / 91,8 %	86,6 / 93,9 / 92,2 %	88,9 / 94,4 / 92,9 %
η con 20 % P _{m,e} ²⁾	90,3 / 93,5 / 94,8 %	91,6 / 96,2 / 95,2 %	91,6 / 96,2 / 95,2 %	92,2 / 96,7 / 93,6 %	93,0 / 97,0 / 93,9 %
η con 25 % P _{m,e} ²	91,8 / 96,4 / 93,1 %	92,7 / 96,9 / 95,8 %	92,7 / 96,9 / 95,8 %	93,2 / 97,2 / 96,1 %	93,9 / 97,2 / 96,6 %
η con 30 % P _{m,e} ²⁾	92,7 / 96,9 / 96,0 %	93,5 / 97,2 / 96,3 %	93,5 / 97,2 / 96,3 %	94,0 / 97,2 / 96,8 %	94,5 / 97,3 / 96,9 %
η con 50 % P _{me} , η	94,3 / 97,4 / 97,0 %	95,0 / 97,7 / 97,3 %	93,0 / 97,7 /97,3 %	93,2 / 97,8 / 97,4 %	93,6 / 97,9 / 97,6 %
η con 75 % P _{m,e} ^η	95,4 / 97,9 / 97,7 %	95,6 / 97,8 / 97,8 %	93,6 / 97,8 / 97,8 %	93,8 / 97,9 / 97,8 %	96,0 / 97,9 / 97,8 %
η con 100 % P _{m,r} ²⁾	93,7 / 97,9 / 97,5 %	95,5 / 95,0 / 97,5 %	93,5 / 98,0 / 97,8 %	93,9 / 98,0 / 97,9 %	96,2 / 97,9 / 98,0 %
Rendimiento de adaptación MPI			> 99.9%		


EQUIPAMIENTO DE SEGURIDAD	PRIMO 3.0-1	PRIMO 3.5-1	PRIMO 3.6-1	PRIMO 4.0-1	PRIMO 4.6-1
Medición del aislamiento CC			54		
Comportamiento de sobrecarga		Desplazamiento del punto de trabajo, limitación de potencia			
Seccionador CC		5í			
Protección contra polaridad inversa			51		

INTERFACES	PRIMO 3.0-1	PRIMO 3.5-1	PRIMO 3.6-1	PRIMO 4.0-1	PRIMO 4.6-1	
WLAN / Ethernet LAN		Fronius Solar.web, Modbus TCF SunSpec, Fronius Solar AFI (JSON)				
6 inputs y 4 inputs/outputs digitales		Interface receptor del control de onda				
USB (Conector A) 1)		Datalogging, actualización de inversores vía USB				
2 conectores EJ 45 (R5422) ³⁾		Fronius Solar Net				
Salida de aviso ¹⁾		Gestión de la energía (xalida de relé libre de potencial)				
Datalogger y Servidor web		Incluido				
Input externo 1)		Interface SO-Meter / Input para la protección contra sobretensión				
E5485		Modbus 1	tTU SunSpec o conexión d	el contador		


Más información sobre la disponibilidad de inversores en su país en www.fronius.es

¹⁾ De acuerdo con IEC 62109-1. 2) Y con Umpp mín. / Udc,r / Umpp máx. 3) También disponible en la versión light.

CURVA DE RENDIMIENTO FRONIUS PRIMO 8.2-1

REDUCCIÓN DE TEMPERATURA FRONIUS PRIMO 8.2-1

DATOS TÉCNICOS FRONIUS PRIMO (5.0-1, 6.0-1, 8.2-1)

DATOS DE ENTRADA	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 8.2-1
Máxima corriente de entrada $(I_{d-min,1}/I_{d-min,2})$	12 A / 12 A	18 A / 1	8 A
Máxima corriente de cortocircuito por serie FV (MFF ₂ /MFF ₂)	18 A / 18 A	27 A / 2	7 A
Mínima tensión de entrada (U _{denia})		80 V	
Tensión CC mínima de puesta en servicio (U _±		80 V	
Tensión de entrada nominal (U _{do.} ,)	710 V		
Máxima tensión de entrada (U _{de máx.})	1.000 V		
Kango de tensión MFF (U _{mpp min.} – U _{mpp min.})	240 -	800 V	270 - 800 V
Número de seguidores MPP		2	
Número de entradas CC		2+2	
Máxima salida del generador PV (P _{d-min})	7,3 kW _{pin}	9,0 kW _{pho}	12,3 kW _{pin}

DATOS DE SALIDA	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 8.2-1		
Potencia nominal CA (F _{m,r})	3.000 W	6.000 W	8.200 W		
Máxima potencia de salida	3.000 VA	6.000 VA	8.200 VA		
Corriente de salida CA (I _{sc mon.})	21,7 A	26,1 A	35,7 A		
Acoplamiento a la red (rango de tensión)		1 - NFE 220 V / 230 V (180 V - 270 V)			
Frecuencia (rango de frecuencia)		30 Hz / 60 Hz (45 - 63 Hz)			
Coeficiente de distorsión no lineal	< 5.76				
Factor de potencia (cos φ _{m,r})		0,83 - 1 ind. / cap.			

PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 8.2-1			
643 x 431 x 204 mm					
	21,5 kg				
	IF 63				
	1				
	2/3				
<1W					
5 in transformador					
Refrigeración de aire regulada					
Instalación interior y exterior					
	-40 - +53 °C				
	0 - 100 %				
	4.000 m				
Conexión de 4x CC+ y 4x CC- bornes roscados 2,5 - 16 mm²					
Conexión de 3 polos CA bornes roscados 2.3 - 16 mm²					
DIN V VDE 0126-1-1/A1, IEC 62109-1/-2	, IEC 62116, IEC 61727, AS 4777-2, AS 4777-3, G	83/2, G59/3, CEI 0-21, VDE AR N 410			
	Cones	643 x 431 x 204 mm 21,5 kg 11 63 1 2 / 3 < 1 W Sin transformador Refrigeración de aire regulada Instalación interior y exterior 40 - +23 °C 0 - 100 % 4.000 m Conexión de 4x CC+ y 4x CC- bornes roscados 2,5 - 16 m			

Más información sobre la disponíbilidad de inversores en su país en www.fronius.es

RENDIMIENTO	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 8.2-1
Mäsime resultminets	94,9 %	98,0%	90,1 %
Renderiesto europea Itani.	97,1%	97,3 %	97,5%
q con 5 % P _{win} ?	86,67,62,57,62,576	84,6 / 86,5 / 86,8 %	83,3 / 89,6 / 88,3 76
gree 10 % Paul	83,6/94,6/33,1%	90,5 / 95,5 / 94,6 %	92,27,96,67,94,876
q cost 20 % P _{ma} 11	93,4 / 97,2 / 96,2 %	84,0 / 97,2 / 96,6 %	94,9 / 97,4 / 97,2 %
g ma 25 % P _m , 9	94,1,7 97,1,766,8 %	94,7 / 97,4 / 97,0 %	95.5 / 97.7 / 97.6 %
ng cost 30 % P _{mex} ⁽¹⁾	94,7 / 97,4 / 97,0 %	03,1/07,6/07,376	95,8 / 97,9 / 97,7 %
n con Str % Page 1	95.8 (97.9) 97.7 %	96.0 / 97.9 /97.6 %	96.3 / 96.0 / 96.0 %
n cost 75 % P _{me} ¹⁷	96,1 / 98,0 / 97,9 %	96,2/98,0/98,0%	96,3/99,1/97,9 %
g cos 100 % P _{ma} 5	96,22,97,07,97,8%	94,2 / 95,6 / 97,8 %	96.27 97.7 (97.7 %
Rendamento de adaptación MPP	- 90 U %		

EQUIPAMIENTO DE SEGURIDAD	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 8.2-1
Medición del aidamiento CC	Ni Ni		
Competinisms de schot args	Desplaramento del punto de trabajo, limitanto de peternia		
Sectionalize CC	Si Si		
Portocrate contra polacular tivorna	54		

INTERFACES	PRIMO 3.0-1	PRIMO 6.0-1	PRIMO 8.2-1
WLAN / Effected LAN	Frontin Selarneh, ModSus TCP SurrSpec, Prontin-Selar API ([SON)		
A impute y 4 imputo/outputs digitales	Jaint fanctorepter del control de soula		
USB (Conscion A) ⁽ⁱ⁾	Hafalogging, actualización de inversores via USB		
2 (1000) 1000 (A) 43 (BS422) *	Egyption Stafes State		
Salida de avises ⁽¹⁾	Gestive de la energia (valula de relé libre de presenzial)		
Bitalogger a Servidor sub	Include		
Imput satemo 11	Industriacio SG Mater./ Imped para la penterción contra sofrecterosión		
85485	Modine UTV Soutper a conseque del contrator		

/ Perfect Welding / Solar Energy / Perfect Charging

SOMOS TRES DIVISIONES CON UNA MISMA PASIÓN: SUPERAR LÍMITES.

/ No importa si se trata de tecnología de suldadura, energia fotovoltaica o tecnología de carga de baterías, nuestra exigencia está claramente definida: ser lider en innovación. Con nuestros más de 3.000 empleados en todo el mundo superamos los límites y nuestras más de 1.000 patentes concedidas son la mejor prueba. Otros se desarrollan paso a paso. Nosotros siempre damos saltos de gigante. Siempre ha sido así. El uso responsable de nuestros recursos constituye la base de nuestra actitud empresarial.

Paca obtenet información más detallada sobre todos los productos de Promius y me

Fronius España S.L.U. Parque Empresarial LA CARPETANIA Miguel Faraday 2 28906 Getafe (Madrid) España Telesono +34 91 649 60 40 Fax +34 91 649 60 44 pv-sales-spain@fronius.com www.fronius.es

Fronius International GmbH Froniusplatz 1 4600 Wels Austria Telefono +43 7242 241-0 Fax +43 7242 241-953940 pv-sales@fronius.com www.fronius.com

¹¹ Y son Usique min. / Ode.z / Usique mix. ²² Eembien dispossible on la vección light.

ANEXO N°05. FICHA TÉCNICA DEL CONDUCTOR NH-80

FREETOX NH-80

Usos

Aplicación especial en aquellos ambientes poco ventilados en los cuales ante un incendio, las emisiones de gases tóxicos, corrosivos y la emisión de humos oscuros, pone en peligro la vida y destruye equipos eléctricos y electrónicos, como, por ejemplo, edificios residenciales, oficinas, plantas industriales, cines, discotecas, teatros, hospitales, aeropuertos, estaciones subterráneas, etc.

En caso de incendio aumenta la posibilidad de sobre vivencia de las posibles víctimas al no respirar gases tóxicos y tener una buena visibilidad para el salvamento y escape del lugar. Generalmente se instalan en tubos conduit.

Descripción

Conductor de cobre electrolítico recocido, sólido o cableado. Aislamiento de compuesto termoplástico no halogenado HFFR.

Características

Es retardante a la llama, baja emisión de humos tóxicos y libre de halógenos.

Marca

INDECO S.A. FREETOX NH-80 450/750 V <Sección> <Año> <Metrado Secuencial>

Calibres

1.5 mm2 - 300 mm2

Embalaje

De 1.5 a 10 mm2, en rollos estándar de 100 metros.

De 16 a 300 mm², en carretes de madera.

Colores

De 1.5 a 10 mm²: blanco, negro, rojo, azul, amarillo, verde y verde / amarillo.

Mayores de 10 mm² sólo en color negro (1).

Norma(s) de Fabricación NTP 370.252 Tensión de servicio 450/750 V Temperatura de operación 80°C

⁽¹⁾ A solicitud del cliente se puede cambiar de color.

TABLA DE DATOS TECNICOS NH - 80

CALIBRE		DIAMETRO	DIAMETRO	ESPESOR	DIAMETRO	PESO	AMPER	AJE (*)
CONDUCTOR	N° HILOS	HILO	CONDUCTOR	AISLAMIENTO	EXTERIOR		AIRE	DUCTO
mm²		mm	mm	mm	mm	Kg/Km	Α	Α
1.5	7	0.52	1.50	0.7	2.9	20	18	14
2.5	7	0.66	1.92	0.8	3.5	31	30	24
4	7	0.84	2.44	0.8	4.0	46	35	31
6	7	1.02	2.98	0.8	4.6	65	50	39
10	7	1.33	3.99	1.0	6.0	110	74	51
16	7	1.69	4.67	1.0	6.7	167	99	68
25	7	2.13	5.88	1.2	8.3	262	132	88
35	7	2.51	6.92	1.2	9.3	356	165	110
50	19	1.77	8.15	1.4	11.0	480	204	138
70	19	2.13	9.78	1.4	12.6	678	253	165
95	19	2.51	11.55	1.6	14.8	942	303	198
120	37	2.02	13.00	1.6	16.2	1174	352	231
150	37	2.24	14.41	1.8	18.0	1443	413	264
185	37	2.51	16.16	2.0	20.2	1809	473	303
240	37	2.87	18.51	2.2	22.9	2368	528	352
300	37	3.22	20.73	2.4	25.5	2963	633	391

(*) TEMPERATURA AMBIENTE 30 ℃.

NO MAS DE TRES CONDUCTORES POR DUCTO.

ANEXO N°06. FICHA TÉCNICA DE FUSIBLES

Máxima protección en aplicaciones

de energía solar

Los nuevos fusibles PV de Cooper Bussmann® ofrecen gran protección a sistemas fotovoltaicos de hasta 1,000 V_{CD}

La necesidad de energias alternativas ha dado lugar a otra innovación en Cooper Bussmann®, lider en protección de circuitos. El desarrollo de avanzados sistemas de fotoceldas solares ha acelerado la demanda de fusibles de alto desempeño. Las condiciones de cortocircuito relacionadas con las fotoceldas solares no permiten niveles de corriente suficientes para interrumpir un fusible tradicional, de manera que se aislen eficazmente las cadenas fotovoltaicas (PV) con falla. La nueva linea de fusibles PV de Cooper Bussmann® ofrece un rango completo de protección, que los fusibles tradicionales no pueden proporcionar.

Protección contra fallas de bajo nivel

 Los fusibles PV son fusibles de rango completo y pueden proteger al sistema contra fallas tan bajas como 1.3 veces la capacidad nominal (I_n) del fusible a 1,000 VC co. Están diseñados especificamente para celdas de pelicula delgada y fotoceldas de silicio cristalino de 4", 5" y 6".

Mayor resistencia a condiciones climáticas

 Los fusibles PV se prueban bajo condiciones climáticas extremas, lo que les permite soportar las condiciones climáticas asociadas con la operación de sistemas de fotoceldas solares y el medio ambiente.

Capacidad de hasta 1,000 Vcp

 Los fusibles PV están diseñados para un voltaje de operación máximo de 1,000 V_{DC}, con base en sistemas típicos de fotoceldas solares con L/R de 1 ms o menor.

Dimensiones aceptadas mundialmente: 10 mm x 38 mm

 Los fusibles PV, en todas sus clasificaciones de corriente, están disponibles con casquillo estándar, montaje con tornillo o montaje de Circuito Impreso.

Especificaciones

Clasificaciones

1,000 V_{CD} Voltaje: 1-15 A 33 kA CD Amperaje: Capacidad de interrupción Interrupción mínima:

Coordinación de fusibles PV:

Constante de Tiempo (L/R):

1.3 veces la l. con celdas de película delgada y celdas de silicio cristalino de 4", 5" y 6" Menor a 1 ms

Especificaciones técnicas

Número de parte	Capacidad Nominal	Integrales de	Pérdida de energia (watts)		
	(Amperes)	Prearqueo	Total a 1,000 V _{co}	0.8 I.	I,
PV-1A10F	1 A	0.15	0.4	0.2	1.5
PV-2A10F	2 A	1,2	3.4	0.2	1.0
PV-3A10F	3 A	4	11	0.3	1.3
PV-4A10F	4 A	9.5	26	0.4	1.3
PV-5A10F	5 A	19	50	0.4	1.6
PV-6A10F	6 A	30	90	0.4	1.8
PV-8A10F	8A	3	32	1.2	2.1
PV-10A10F	10 A	7	70	1.2	2.3
PV-12A10F	12 A	12	120	1.5	2.7
PV-15A10F	15 A	22	220	1.7	2.9

Los fusibles PV están diseñados especificamente para trabajar en sistemas de fotoceldas solares formados por celdas de 4", 5" y 6".

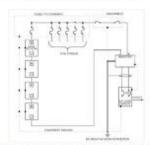
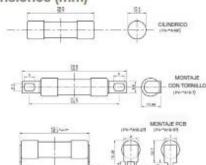


Diagrama tipico del cableado de fotoceldas solares

Bases y Bloques Portafusibles* Cooper Bussmann® recomendados

Número de ca	tálogo Tipo	Amps. máx.	Polos
BM6031PQ	Base portafusible**	30	1
BM6032PQ	Base portafusible**	30	2
BM6033PQ	Base portafusible**	30	3
CHM1	Portafusible seguro para los dedos***	30	1
CHM2	Portafusible seguro para los dedos***	30	2
CHM3	Portafusible seguro para los dedos***	30	3


* Certificado para 1,000 V_{IX}

Consultar Hoja de datos de producto 1104 para información más detallada.
Consultar Hoja de datos de producto 2143 para información más detallada.

Base portafusibles BM6033PQ y portafusible CHM1D

Dimensiones (mm)

Los fusibles PV con casquillo se montan fácilmente en bases portafusibles convencionales BM6031.

O2009 Cooper Bussmann St. Louis, MO 63176 636-394-2677 www.cooperbussmann.com

Impreso en USA

ANEXO N°07. FICHA TÉCNICA DEL INTERRUPTOR TERMOMAGNÉTICO

Ficha técnica del producto A9F74240 Características INT. TERMON

A9F74240 INT. TERMOMAGNETICO IC60N 2X40A CURVA

Principal

Aplicación del dispositivo	Distribución
Gama	Acti 9
Nombre del producto	Acti 9 iC60
Tipo de producto o componente	Interruptor automático en miniatura
Nombre corto del dispositivo	IC60N
Número de polos	2P
Número de polos protegidos	2
Corriente nominal (In)	40 A
Tipo de red	DC CA
Tecnología de unidad de disparo	Térmico-magnético
Código de curva	С
Poder de corte	6000 A Icn 400 V CA 50/60 Hz EN/IEC 60898-1 36 kA Icu 1260 V CA 50/60 Hz EN/IEC 60947-2 10 kA Icu <= 125 V DC EN/IEC 60947-2 10 kA Icu 380415 V CA 50/60 Hz EN/IEC 60947-2 20 kA Icu 220240 V CA 50/60 Hz EN/IEC 60947-2 6 kA Icu 440 V CA 50/60 Hz EN/IEC 60947-2 36 kA Icu 100133 V CA 50/60 Hz EN/IEC 60947-2
Categoría de utilización	Categoria A EN 60947-2 Categoria A IEC 60947-2
Apto para seccionamiento	SI EN 60898-1 SI EN 60947-2 SI IEC 60898-1 SI IEC 60947-2
Normas	EN 60898-1 EN 60947-2 IEC 60898-1 IEC 60947-2

11/09/202

Literación Schneider

1

C	-1		
Com	pien	nem	ano

Complementario	
Frecuencia de red	50/60 Hz
Límite de enlace magnético	8 x In +/- 20%
[lcs] poder de corte en servicio	15 kA 75 % EN 60947-2 220240 V CA 50/60 Hz 7.5 kA 75 % EN 60947-2 380415 V CA 50/60 Hz 4.5 kA 75 % EN 60947-2 440 V CA 50/60 Hz 15 kA 75 % IEC 60947-2 220240 V CA 50/60 Hz 7.5 kA 75 % IEC 60947-2 220240 V CA 50/60 Hz 7.5 kA 75 % IEC 60947-2 230415 V CA 50/60 Hz 4.5 kA 75 % IEC 60947-2 440 V CA 50/60 Hz 27 kA 75 % IEC 60947-2 12133 V CA 50/60 Hz 27 kA 75 % IEC 60947-2 12133 V CA 50/60 Hz 6000 A 100 % EN 60898-1 400 V CA 50/60 Hz 6000 A 100 % IEC 60847-2 72125 V DC 10 kA 100 % IEC 60947-2 72125 V DC
Clase de limitación	3 EN 60898-1 3 IEC 60898-1
[Ui] tensión asignada de aislamiento	CA 50/60 Hz EN 60947-2 CA 50/60 Hz IEC 60947-2
[Uimp] Tensión asignada de resistencia a los choques	6 kV EN 60947-2 6 kV IEC 60947-2
Indicador de posición del contacto	Si
Tipo de control	Maneta
Señalizaciones en local	Indicador de disparo
Tipo de montaje	Fijo
Tipo de montaje	Carril DIN
Compatibilidad de bloque de distribución de embarrado tipo peine	Arriba o abajo Sl
Pasos de 9 mm	4
Altura	85 mm
Anchura	36 mm
Profundidad	78.5 mm
Peso del producto	0.25 kg
Color	Blanco
Endurancia mecánica	20000 ciclos
Durabilidad eléctrica	10000 ciclos
Conexiones - terminales	Terminal simple arriba o abajo 135 mm² rígido Terminal simple arriba o abajo 125 mm² Flexible
Longitud de cable pelado para conectar bornas	14 mm arriba o abajo
Par de apriete	3.5 N.m arriba o abajo
Protección contra fugas a tierra	Bloque independiente

Entorno

Grado de protección IP	IP20 IEC 60529 IP20 EN 60529
Grado de contaminación	3 EN 60947-2 3 IEC 60947-2
Categoría de sobretensión	IV
Tropicalización	2 IEC 60068-1
Humedad relativa	95 % 55 °C
Altitud máxima de funcionamiento	02000 m
Temperatura ambiente de funcionamiento	-3570 °C
Temperatura ambiente de almacenamiento	-4085 °C

Unidades de embalaje

emanace ac ememoje	
Tipo de Unidad de Paquete 1	PCE
Número de Unidades en el Paquete 1	1
Paquete 1 Peso	238 g
Paquete 1 Altura	3.5 cm
Paquete 1 ancho	7.5 cm
Paquete 1 Largo	9.5 cm
Tipo de Unidad de Paquete 2	BB1
Número de Unidades en el Paquete 2	6
Paquete 2 Peso	1.498 kg
Paquete 2 Altura	8 cm
Paquete 2 Ancho	9.6 cm
Paquete 2 Largo	22.5 cm
Tipo de Unidad de Paquete 3	S03
Número de Unidades en el Paquete 3	66
Paquete 3 Peso	16.985 kg
Paquete 3 Altura	30 cm
Paquete 3 Ancho	30 cm
Paquete 3 Largo	40 cm

Sostenibilidad de la oferta

Estado de oferta sostenible	Producto Green Premium
Conforme con REACh sin SVHC	Si
Directiva RoHS UE	Conforme Declaración RoHS UE
Sin metales pesados tóxicos	Si
Sin mercurio	Si
Información sobre exenciones de RoHS	Si
Normativa de RoHS China	Declaración RoHS China Declaración proactiva de RoHS China (fuera del alcance legal de RoHS China)
Comunicación ambiental	Perfil ambiental del producto
RAEE	En el mercado de la Unión Europea, el producto debe desecharse de acuerdo con un sistema de recolección de residuos específico y nunca terminar en un contenedor de basura.

Garantía contractual

Periodo de garantía 18 months	
-------------------------------	--

ANEXO N°08. FICHA TÉCNICA DEL INTERRUPTOR DIFERENCIAL

Ficha técnica del producto A9R91240 Características

Acti 9 iID - RCCB - 2P - 40A - 30mA - type A-SI

Principal

Tillopai	
Gama	Acti 9
Nombre del producto	Acti 9 iID
Tipo de producto o componente	Interruptor diferencial (RCCB)
Nombre corto del dispositivo	IID
Número de polos	2P
Posición de neutro	Izquierda
Corriente nominal (In)	40 A
Tipo de red	CA
Sensibilidad ante fugas a tierra	30 mA
Retardo de la protección contra fugas a tierra	Instantáneo
Clase de protección contra fugas a tierra	Tipo A-SI

Complementario

Ubicación del dispositivo en el sistema	Salida
Frecuencia de red	50/60 Hz
[Ue] tensión asignada de empleo	220240 V CA 50/60 Hz
Tecnologia de disparo corriente residual	Independiente de la tensión
Poder de corte y de cierre nominal	ldm 1500 A lm 1500 A
Intensidad de cortocircuito condicional	10 kA
[Ui] tensión asignada de aislamiento	500 V CA 50/80 Hz
[Uimp] Tensión asignada de resistencia a los choques	6 kV
Indicador de posición del contacto	Si
Tipo de control	Maneta
Tipo de montaje	Ajustable en clip

Literarde Schneider

Tipo de montaje	Carril DIN
Pasos de 9 mm	4
Altura	91 mm
Anchura	36 mm
Profundidad	73.5 mm
Peso del producto	0.21 kg
Color	Blanco
Endurancia mecánica	20000 ciclos
Durabilidad eléctrica	AC-1, estado 1 15000 ciclos
Descripción de las opciones de bloqueo	Dispositivo de cierre con candado
Conexiones - terminales	Terminal simple arriba o abajo135 mm² rígido Terminal simple arriba o abajo125 mm² Flexible Terminal simple arriba o abajo125 mm² flexible con terminal
Longitud de cable pelado para conectar bornas	14 mm para arriba o abajo conexión
Par de apriete	3.5 N.m arriba o abajo

Entorno

Normas	EN/IEC 61008-1
Grado de protección IP	IP20 acorde a IEC 60529 IP40 - tipo de cable: envolvente modular) acorde a IEC 60529
Grado de contaminación	3
Compatibilidad electromagnética	Resistencia a impulsos 8/20 µs, 3000 A acorde a EN/IEC 61008-1
Temperatura ambiente de funcionamiento	-2560 °C
Temperatura ambiente de almacenamiento	-4085 °C

Unidades de embalaje

Tipo de Unidad de Paquete 1	PCE
Número de Unidades en el Paquete 1	1
Paquete 1 Peso	230 g
Paquete 1 Altura	4 cm
Paquete 1 ancho	8.5 cm
Paquete 1 Largo	9.6 cm
Tipo de Unidad de Paquete 2	BB1
Número de Unidades en el Paquete 2	6
Paquete 2 Peso	1.432 kg
Paquete 2 Altura	9 cm
Paquete 2 Ancho	10 cm
Paquete 2 Largo	26 cm
Tipo de Unidad de Paquete 3	S03
Número de Unidades en el Paquete 3	54
Paquete 3 Peso	13.375 kg
Paquete 3 Altura	30 cm
Paquete 3 Ancho	30 cm
Paquete 3 Largo	40 cm

Sostenibilidad de la oferta

Estado de oferta sostenible	Producto Green Premium		
Directiva RoHS UE	Conforme Declaración RoHS UE		
Sin mercurio	Sí		

Utels On Schmelder

2

RoHS	SI
Normativa de RoHS China	Declaración RoHS China Producto fuera del ámbito de RoHS China. Declaración informativa de sustancias
Comunicación ambiental	Perfil ambiental del producto
Garantía contractual	
Periodo de garantía	18 months

ANEXO N°09. COTIZACIONES

Cotización

Autosolar Energía del Perú S.A.C.

Carretera Panamericana Sur KM 29.5 Megacentro, Unidad I-6, Lurin Referencia: Frente a Campomar, entrada al Megacentro altura Puente VIDU Teléfono: 017154357 MóvIl: 993943927

R.U.C: 20602492118

JULIO RAMÍREZ

JULIO RAMÍREZ

DOCUMENTO	NÚMERO	PÁGINA	FECHA
Presupuesto	1 009289	1	15/09/2020

CLIENTE	R.U.C.	AGENTE	FORMA DE PAGO	VALIDEZ DE LA OFERTA
11167		17 Jean Gómez		1 Mes, salvo cambio de tarifa

GARANTÍA DE UN AÑO EN LOS EQUIPOS OFERTADOS

CÓDIGO	DESCRIPCIÓN	CANTIDAD	PRECIO UD.	SUBTOTAL	DTO.	TOTAL
1002120	Panel Solar ERA 340W 24V ESPMC-340 Policristalino	26	480,00	12.480,00		12.480,00
1501620	Estructura Cubierta Plana 15º 10 Panel CVE915	1	1.463,97	1.463,97		1.463,97
1501618	Estructura Cubierta Plana 15º 8 Panel CVE915	2	1.230,97	2.461,94		2.461,94
3208044	Inversor C/Red FRONIUS Primo 8.2.0-1 8.2kW	1	8.701,11	8.701,11		8.701,11

TIPO	IMPORTE	DESCUENTO	PRONTO PAGO	PORTES	FINANCIACIÓN	BASE	I.G.V	R.E.
18,00 10,00 4,00	25.107,02					25.107,02	4.519,20	

Firmado Autosolar

AutoSolar

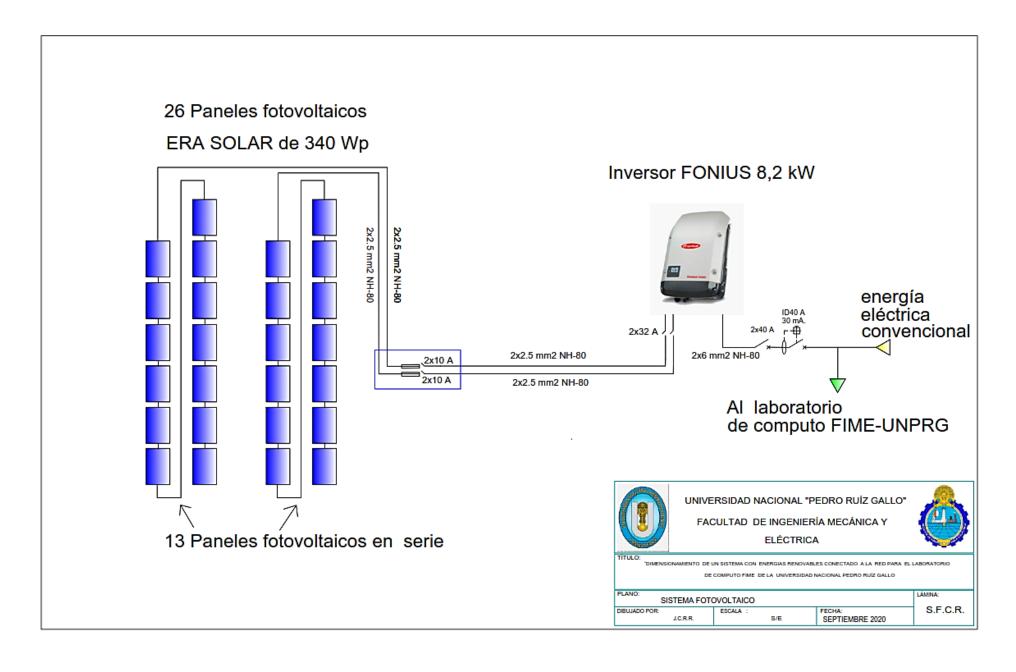
29.626,28 S/. TIPO DE MONEDA: SOLES

PARA DOLARES: TIPO DE CAMBIO S/. 3,33
NO INCLUYE ENVÍO NI INSTALACION, SALVO SE ESPEFICIQUE EN LA COTIZACIÓN EMPRESAS DE TRANSPORTE DE CONFIANZA PARA ENVÍO A PROVINCIAS MARVISUR - SHALOM - OLVA COURIER - SPC COURIER - TRANSZAVALA

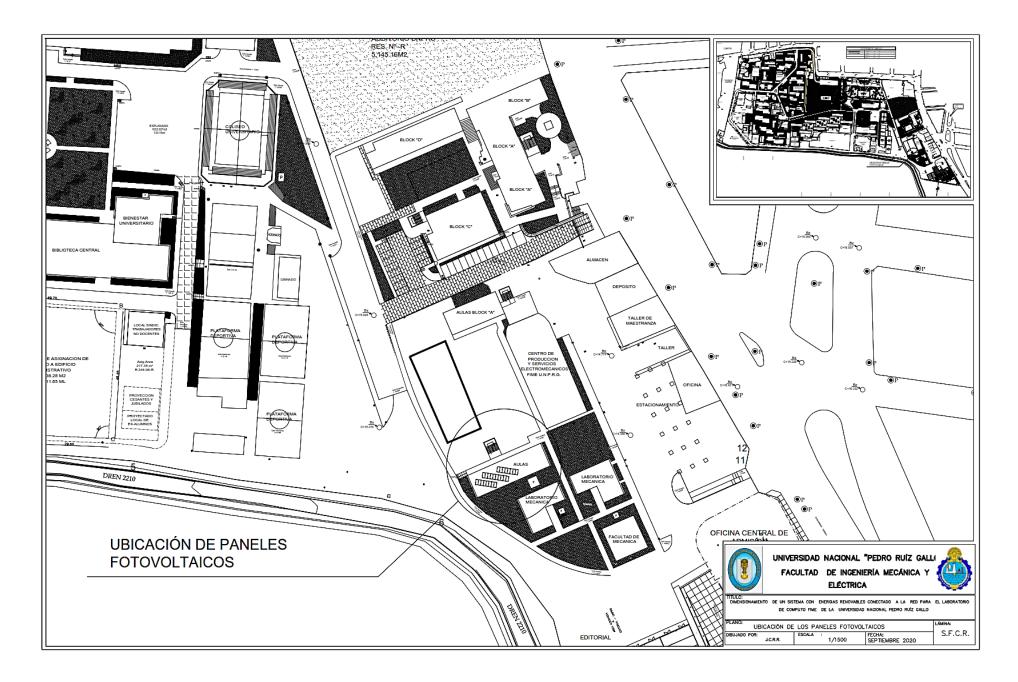
DATOS BANCARIOS EN SOLES

INTERBANK: 6373001500225 / CCI: 00363700300150022563 BCP: 1942448005022 / CCI: 00219400244800502298 BBVA: 001103970100013290 / CCI: 011397000100013290-70

DATOS BANCARIOS EN DÓLARES


INTERBANK: 2003108749061 / CCI: 00320001310874906134 BCP: 1942552861183 / CCI: 00219400255286118390 BBVA: 001103970100013304 / CCI: 011397000100013304-79

TOTAL:


BANCO DE LA NACION

Cuenta Corriente Soles: 00-018-045354 / CCI: 018-018-000018045354-20

ANEXO N°10. PLANO DEL SISTEMA CONETADO A RED

ANEXO N°11. PLANO DE UBICACIÓN DE PANELES

