

UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO FACULTAD DE MEDICINA VETERINARIA

"EFECTO DE LOS PREBIOTICOS, PROBIOTICOS, INMUNOESTIMULANTES Y ENERGIZANTES EN LA GANANCIA DE PESO VIVO DE PAVOS DE LA LINEA HYBRID"

TESIS

PRESENTADA PARA OPTAR EL TÍTULO PROFESIONAL DE:

MÉDICO VETERINARIO

PRESENTADA POR:

Bach. M.V: ALDO MIGUEL MENDOZA LUCERO

LAMBAYEQUE-PERÚ 2017

JURADO

ľ	MSc M.V. VICTOR RAVILLET SUAREZ PRESIDENTE
	M.V. ZULLY MONTENEGRO EZQUIVEL
	SECRETARIA
	M.V. ADRIANO CASTAÑEDA LARREA VOCAL
	VOCAL
	MSc. M.V. CESAR PISCOYA VARGAS PATROCINADOR
	TAMOCINADON
	MSc. M.V. MAGALY DIAZ GARCIA

DEDICATORIA

A Dios y a la virgen María, quienes inspiraron y fortalecieron mi espíritu

> A mis padres, Sixto y Betty, por su confianza y continuo apoyo.

A mis hermanos, Melody, Renzo, Sixto, por su condicional amistad.

AGRADECIMIENTO

A MSc. M.V. Magaly Díaz García por su paciencia y apoyo

A MSc. M.V. Cesar Piscoya Vargas, con su gran ayuda y guía para la realización de este trabajo.

CONTENIDO

DED	ICATORIA	i
AGR	ADECIMIENTOS	ii
CON	TENIDO	iii
I.	INTRODUCCIÓN	1
II.	REVISION BIBLIOGRÁFICA	3
III.	MATERIALES Y METODOS.	16
IV.	RESULTADOS Y DISCUSION	20
V.	CONCLUSIONES	29
VI.	RECOMENDACIONES	30
VII.	RESUMEN	31
VIII.	REFERENCIAS BIBLIOGRÁFICAS	32
IX.	APENDICE	35
X.	ANEXO	37
ΧI	FOTOS	50

INTRODUCCION

La crianza de pavos de engorde actualmente se ha incrementado cambiando el sistema de producción tradicional por un sistema productivo más actualizado, por lo que hoy se buscan nuevas alternativas aplicables en la alimentación de las aves de engorde, como es el caso de los prebioticos, probioticos, inmunoestimulantes y energizantes.

El tracto gastrointestinal es la primera barrera fisiológica para cualquier sustancia nociva existente en el alimento. De allí que toda la carga de bacterias y micotoxinas está directamente en contacto con el epitelio del mismo, exponiéndose a sus efectos, incluso si se encuentran a bajas concentraciones. Además, el tracto gastrointestinal posee un ambiente complejo en el que factores que van desde cambios de pH hasta microbiota que interactúan con las micotoxinas, pudiendo influir sobre sus efectos.

El mantenimiento de un tracto gastrointestinal sano es crucial, ya que asegura que los nutrientes sean absorbidos a una tasa óptima, proporcionando una protección eficaz contra patógenos a través de su propio sistema inmune, y mantenimiento de la microflora en números y proporciones adecuadas. Desde una perspectiva de salud humana, la colonización intestinal en animales por cepas patógenas de *E. coli* y *Salmonella*, potenciadas por la ingestión de algunas micotoxinas, puede incrementar la transmisión vertical de agentes patógenos o acrecentar las concentraciones de antibióticos en productos de consumo humano como consecuencia del tratamiento de los animales.

Los antibióticos promotores del crecimiento (APC) han sido utilizados en los concentrados para animales a nivel mundial, debido a que mejora los índices productivos al controlar la microbiota entérica; aunque estudios revelaron que solo un 72% de los trabajos en pollos se encontraron estas mejoras. A pesar de los resultados, la Unión Europea tomó la decisión de prohibir su uso en alimentación

animal a partir del 1 de enero de 2006, debido a la posibilidad de generación de resistencias a patógenos de los antibióticos y a las consecuencias negativas sobre la salud y el bienestar animal y la seguridad alimentaria

La biotecnología está aportando a los nutricionistas una nueva generación de productos que son alternativas viables a los antibióticos promotores de crecimiento y que pueden ser promocionados como naturales y seguros para el animal, el consumidor y el medio ambiente como son: Fructooligosacáridos, Lactobacillus, Bifidobacterium, Saccharomyces, Lisado de paredes bacterianas, Maca, camu-camu.

En base a las consideraciones expuestas se propuso desarrollar el presente trabajo de investigación cuyos objetivos fueron los siguientes:

Objetivo General:

Evaluar el efecto de la suplementación en la dieta con un compuesto natural que contiene prebióticos, probióticos, inmunoestimulantes y energizantes sobre los parámetros productivos de pavos machos línea Hybrid.

Objetivos específicos:

- Determinar la ganancia de peso al final de pavos machos línea Hybrid.
- ❖ Determinar el consumo de alimento de pavos machos línea Hybrid
- Evaluar la conversión alimenticia y el mérito económico de pavos machos línea Hybrid

II. REVISION BIBLIOGRAFICA

2.1 FISIOLOGIA DIGESTIVA DEL PAVO.

El aparato digestivo es un tubo recubierto por células epiteliales especializadas que están continuas con las capas epiteliales que cubren la piel. De esta forma, el aparato digestivo está abierto al ambiente externo y potencialmente expuesto a organismos y agentes tóxicos que son introducidos durante la ingesta (Cunningham y Bradley, 2008). La anatomía y el desarrollo del tubo digestivo determinan en gran parte el tipo de alimento que es útil en la nutrición de una especie en particular. Los carnívoros tienen vías digestivas muy cortas, en tanto que el tubo alimentario de los herbívoros es relativamente largo.

El tracto gastrointestinal realiza dos funciones básicas: Adquisición y asimilación de nutrientes, y mantenimiento de una barrera protectora contra las infecciones microbianas y virales. (Cunninghan y Bradley 2009). Son muchos los factores que pueden influenciar el desempeño del tracto gastrointestinal, como su salud, los estímulos inmunitarios, el medio ambiente, la nutrición, el tipo y la calidad de los ingredientes de la ración, las toxinas, el equilibrio de la microflora, las secreciones endógenas, la motilidad, los aditivos, etc. Se puede considerar que las funciones digestivas constituyen los factores más limitantes para el rendimiento. En esencia, la producción de pavo de engorde consiste en transformar los ingredientes de la dieta en carne. Los tipos de alimentos para pollos y pavos son semejantes a los que se sirven a perros y gatos. Pollos y pavos tienen un aparato digestivo simple, en donde hay escaso lugar para una flora intestinal que ayude a la digestión del alimento, por tanto, estas aves, dependen de las enzimas secretadas en cantidades apropiadas por el aparato digestivo para degradar moléculas alimenticias complejas a sustancias más simples capaces de ser absorbidas.

2.2 INTEGRIDAD INTESTINAL

El desarrollo y salud del aparato digestivo son la clave de la productividad de todos los animales de granja, incluyendo a las aves de corral.

La salud intestinal (funcionamiento óptimo del tracto intestinal, el cual maximiza el desempeño productivo de las aves), conocida también como intestinal es la función óptima del tracto digestivo, aspecto primordial en la crianza de ave que les permite alcanzar el peso y la conversión alimenticia esperada para la línea genética en cuestión. Los peligros contra la salud intestinal, presentes en todas las integraciones avícolas son la coccidia y la enteritis bacteriana (Palacios; 2009), la microflora intestinal se compone en su mayoría por bacterias ácido lácticas; esta microflora es esencial para descomponer las sustancias alimenticias que no fueron digeridas previamente, manteniendo la integridad de la mucosa intestinal. Al desdoblar los alimentos producen vitaminas (sobre todo del complejo hidrosoluble) y ácidos grasos que al mantener la estabilidad intestinal logran aumentar la respuesta inmune; se conoce que cuando estos mecanismos son agredidos por algún agente externo es el momento idóneo para el accionar de las bacterias prebióticas (Milian; 2005).

Las vías digestivas de las aves así como las de los mamíferos, albergan una flora microbiológica fuerte. Este ecosistema digestivo está en equilibrio y permanece normalmente constante durante toda la vida de un animal adulto. Pero este equilibrio se puede perturbar, cuando el ave sufre agresiones: estrés, desequilibrios nutricionales, vacunaciones, suministro masivo de antibióticos y sustancias que perturban el valor del pH del intestino. Entonces, los factores que perturban el equilibrio de la flora intestinal, tienen una repercusión en la salud del animal.

Los factores más importantes que intervienen en la salud intestinal son:

- Barreras físicas: La integridad intestinal se ve comprometida cuando la pared de la mucosa es dañada, las células epiteliales afectadas o destruidas, el suministro vascular interrumpido o el sistema inmune comprometidos.
- Factores estresantes: El equilibrio intestinal también se puede ver alterado por factores de estrés como manejo inadecuado o defectuoso y transportación, sobrepoblación, cambios bruscos del medio ambiente, vacunaciones, etc.

- Factores de la dieta: Deficiencias nutricionales debido a: desbalance de la fórmula, mal manejo del grano, alta carga bacteriana en el alimento y micotoxinas, que afectan la salud intestinal.
- Toxinas del alimento: Las toxinas del alimento y tóxicos también afectan la integridad intestinal.
- Micro flora intestinal: El equilibrio en la microflora intestinal permite una óptima integridad intestinal. Las bacterias útiles (*Lactobacillus acidophilus*, *L. bulgaris*, *Bifidobacterium bifidum*, *B. infantis*, *Bacillus sp*) juegan un papel Importante en el control de la flora y estimulan el desarrollo de la pared intestinal.
- **Deformidad del pico:** Una deformidad del pico evita un consumo adecuado de alimento y puede causar daño al desarrollo intestinal.
- Estado sanitario: Enfermedades como la coccidiosis y cólera aviar afectan severamente la integridad intestinal. Los virus, hongos bacterias, parásitos y toxinas pueden ser la causa (Granados; 2008).

2.3 FLORA BACTERIANA DEL TRACTO DIGESTIVO

En el organismo cuenta con una flora microbiana indígena y otra compuesta por microorganismos que potencialmente pueden comportarse como patógenos; realizándose una simbiosis entre el organismo superior y la flora microbiana indígena, el primero es el hospedero que suministra a los microorganismos el ambiente para su crecimiento y los microorganismos como simbiontes, ponen a disposición del hospedador su capacidad de síntesis (proteínas y vitaminas) y de ruptura celular (celulolisis). La población bacteriana del buche está compuesta mayoritariamente por lactobacilos, con un pequeño número de coliformes y estreptococos. No se encuentran normalmente anaerobios estrictos. Las bacterias se hayan asociadas al epitelio con una capa de material extracelular, manteniéndose a una distancia de unos 7nm, estableciéndose puentes de contacto entre las bacterias. Al parecer, estos lactobacilos coloniza en el buche a las pocas horas del nacimiento y persisten a lo largo de la vida de las aves; también se puede distinguir *Estreptococcus*, *Salmonella*, *Shigella*,

Lactobacillus, Escherichia. Las especies dominantes son E. coli, Estreptococos, Enterococcus, Sthapylococcus y Lactobacillus; también anaerobios obligados como Eubacterium, Propionibacterium, Gemmiger y Fusobacterium. Ciego: Cocos Gram + anaerobios, bacteroidaceae, Eubacterium sp., Bifidobacterium spp., Budding cocos, Clostridium sp. Gemmiger formicilis. (Barragán; 2000).

2.4 SISTEMA INMUNE DE AVES

El sistema inmune, es un mecanismo de defensa altamente especializado, su propósito es el de proteger al huésped (en este caso las aves) de la muerte, después que éste ha sido infectado por bacterias oportunistas patogénicas, virus, hongos, protozoarios y ciertas toxinas. Su función del sistema inmune es defender contra células extrañas que pueden ser organismos invasivos o células anormales de su propio cuerpo.

Fisicamente, está constituido por: El sistema linfoide, éste está compuesto de: sangre, ganglios linfáticos (médula ósea, bolsa de fabricio, bazo y el timo) y especialmente las células llamadas linfocitos. (Lerzundy, J. 2001).

Los neonatos nacen con el sistema inmune incompleto, la inmunidad materna es pasada al embrión a través de fluido amniótico y la yema del huevo cuando este los ingiere durante y después de la ruptura del cascaron. De ahí que el sistema inmune comienza a desarrollarse antes de la eclosión y se completa en la madurez sexual . Conforme se desarrolla, el embrión de pollo absorbe parte de la IgG de la yema, la cual aparece luego en la circulación (Tizard, I.)

Cuando la inmunidad materna comienza a disminuir después que el pollo nace. El total de anticuerpos bajan por mitad cada 03 - 04 días. Los niveles de anticuerpos caen más rápido a medida que el pollito se acerca a las dos semanas de edad. Al final de la segunda semana los anticuerpos maternales son muy escasos. Durante este período la protección puede variar de un pollo a otro debido a variaciones biológicas de gallina a gallina sobre el total de anticuerpos que pasan a través de la yema ((Lerzundy, J. 2001). La IgM y la IgA maternas de la albúmina se difunden en el líquido amniótico, y el embrión absorbe el vitelo, de modo que cuando el pollo emerge del cascarón cuenta con IgG en el suero y con IgM e IgA en el intestino. El pollo que recién emerge no absorbe todo los anticuerpos del saco vitelino sino hasta pasadas 24 horas de la

eclosión. Estos anticuerpos maternos son un impedimento real contra la vacunación eficaz hasta que desaparecen, entre 10 y 20 días después de emerger del cascarón ((Tizard, I.).

2.5 LOS PREBIOTICOS

Los prebióticos son sustancias que no son hidrolizados durante su tránsito por el aparato digestivo, sirven de sustrato a las bacterias beneficiosas, estimulando su crecimiento y/o su actividad metabólica, alteran la microbiota intestinal de manera favorable para el hospedador, induciendo efectos beneficiosos no sólo en el medio intestinal, sino también sistémicos.

Las cadenas cortas de fructooligosacáridos, son fibras solubles utilizadas para la suplementación alimenticia debido a sus beneficios nutricionales y de salud. Estas fibras se encuentran naturalmente en muchos vegetales como la cebolla, el ajo, trigo, etc., pero también pueden ser producidas a partir de sacarosa. La suplementación de compuestos prebióticos, como fructooligosacáridos de cadena corta (scFOS) ha demostrado ofrecer una ventaja en la utilización de nutrientes, el crecimiento y resistencia a enfermedades de diversas especies animales mediante la mejora gastrointestinal (GI) microbiana (Peng *et al.* 2007).

Beneficios:

Reduce bacterias aerobias y anaerobias facultativas en el tejido y líquido intestinal Aumenta bacterias benéficas.

Regula la función digestiva.

Reduce la formación de elementos que generan mal olor en las heces.

Estable a la variación de temperatura y a actividad del agua.

2.6 LOS PROBIÓTICOS

Los probióticos son productos naturales que utilizados como promotores del crecimiento en los animales permiten obtener mayores rendimientos, más elevada resistencia inmunológica y reducida cantidad de patógenos en el tracto gastrointestinal (TGI). Estas bacterias representadas por *Lactobacillus acidophilus*, *Lactobacillus bulgaris*, *Bifidobacterium bifidum*, *Bifidobacterium infantis* y otros microorganismos

beneficiosos, son la primera línea de defensa del cuerpo contra los microorganismos potencialmente dañinos que se inhalan o se ingieren Milian (2005). El papel más importante de las bacterias probióticas es actuar en resistencia en contra de la colonización de agentes exógenos, patógenos potenciales, las productoras de ácido láctico, constituyentes de una gran parte de la microflora intestinal en animales. Por un microorganismo patógeno en acción actúa un probiótico, si este no es tóxico o causa enfermedad el probiótico debe ser capaz de resistir los ácidos y la bilis, así como el proceso de digestión del estómago del animal, el individuo que es capaz de establecerse y colonizar los intestinos; es cuando el probiótico establece la habilidad de inhibir el crecimiento de los patógenos. (Salvador y Cruz, 2009).

Son muchas las bacterias y levaduras que se pueden usar de forma beneficiosa para mantener una flora digestiva sana y en equilibrio. Los microorganismos más usados son *Lactobacillus sp., Sreptococcus faeccium, Bacillus subtilis, B. cereus, B. licheniformis, B. stearothermophyllus y Saccharomyces cerevisiae.* Los *Lactobacillus* crecen rápidamente en el intestino son quizás los más conocidos, se trata de bacterias que pueden transformar la lactosa en ácido láctico.

Este aumento de ácido láctico disminuye el pH intestinal a unos niveles tan bajos así como disminuye la supervivencia de microorganismos como *E. coli, Salmonellas* entre otros. (Milian; 2005).

2.7 INMUNOESTUMULANTES: LISADO DE PAREDES BACTERIANAS.

Las preparaciones de pared celular bacteriana (es decir LPS, lipopéptidos, peptidoglucanos y muramilpéptidos) son estimulantes muy potentes de la respuesta inmune cuando son puestos a pruebas in vitro. Sin embargo, tales productos pueden causar inflamación severa y pueden ser muy tóxicos a concentraciones sólo levemente por encima de la dosis "segura". El LPS induce la producción de citoquinas las cuales reducen el apetito y suprimen el crecimiento de los animales (Raa, 2000). La respuesta al LPS está asociada con un incremento del factor de necrosis tumoral alfa (TNFα), IL-1 (interleuquina-1) y cortisol circulante en vacas adultas, y tanto el TNFα como la IL-1 modulan los niveles de cortisol sanguíneo regulando de esta manera la respuesta al

estrés. Los peptidoglucanos son fragmentos de la pared de microorganismos que

brindan más resistencia a infecciones microbianas (López et al., 2003).

2.8 COMPUESTOS ENERGIZANTES: CAMU-CAMU.

El camu camu es un fruto con alto contenido de ácido cítrico y ascorbico (2.994mg por

100g de pulpa). Su fruta madura posee una pulpa de color rosado natural, tornándose

más intenso cuanto más madura. Contrariamente a lo que sucede en otros frutales, el

contenido de ácido ascórbico en el camu camu aumenta hasta que la fruta esta semi-

madura, después de lo cual disminuye solamente 5% al 10% cuando completa su

proceso de maduración.

Su contenido de proteínas esta en 0.5 mg/100g, el de carbohidratos en 4.7 mg/100 g,

mientras que los demás constituyentes se encuentras en cantidades similares a los que

se observan en otras frutas tropicales.

La vitamina C es un importante antioxidante, que previene y combate el estrés, y es un

energético muy importante. Es fundamental para la elaboración de proteínas

involucradas en la formación y salud del cartílago, nudos, piel y el aparato circulatorio.

Además la vitamina C constituye al mantenimiento del sistema inmunológico,

fortaleciendo la inmunidad contra enfermedades infecciosas; facilita la absorción de

nutrientes (incluyendo el hierro) en el sistema digestivo (Bernabe, L.; Centena, L.;

Ramon, A. 2003)

2.9 BIOMODULADOR ORAL SOLUBLE

Es un compuesto natural que contiene: microorganismos y metabolitos de

microorganismos benéficos e ingredientes vegetales. Es administrado vía oral para

modular y/o reactivar el status fisiológico-inmunológico de los animales.

COMPONENTES:

Compuestos prebióticos: Fructooligosacáridos.

Compuestos probióticos: Lactobacillus, Bifidobacterium, Saccharomyces.

Compuestos inmunoestimulantes: Lisado de paredes bacterianas.

Compuestos energizantes: Maca, camu-camu.

14

MECANISMOS DE ACCION:

- Se adiciona al agua de bebida para modular y/o reactivar el sistema fisiológicoinmunológico de las aves.
- Acción preventiva, competitiva y terapéutica en el tracto gastro-intestinal.
- Bloquea a las toxinas microbianas patógenas (*Salmonella, E. coli, Clostridium*, etc) y micotoxinas.
- Incrementa la producción de Ig A en las mucosas.
- Activa las células inmunocompetentes de las Placas de Peyer.
- Estimula la actividad de las células presentadoras de antígeno, la producción de anticuerpos y los mecanismos de respuesta humoral.
- Estimula la actividad de los linfocitos T y los mecanismos de respuesta celular.
- Acción energizante y metabolizante.

BENEFICIOS

- Provoca una protección por la activación y regularización del sistema inmunitario.
- Maximiza el efecto de las vacunaciones.
- Reduce cuadros de inmunodepresión, previniendo infecciones.
- Minimiza el riesgo de presentación de cuadros tóxicos.
- Regulariza la actividad del sistema nervioso, gástrico, intestinal, hepático y hormonal.

INDICACIONES DE USO.

De uso veterinario, para ser usado vía oral durante 5 a 7 días.

- Administrar 500 ml / 10000 aves en el agua de bebida para broilers bebes y pollas en levante durante los 10 primeros días de edad.
- Administrar 500 ml / 5000 aves en el agua de bebida para broilers, ponedoras y reproductoras en levante y producción.

(Reinmark.com/producto/biomodulador_oral)

2.8 TRABAJOS EXPERIMENTALES CON PREBIÓTICOS, PROBIOTOS, INMUNOESTIMULANTES Y ENERGIZANTES

2.8.1 PREBIÓTICOS

Los resultados obtenidos con FOS en diversas investigaciones en avicultura son variables y parece que dependen de la dosis utilizada, aparte de la presencia del microorganismo capaz de utilizarlos; así tenemos que **Xu y col (2003)** observaron efectos positivos en los rendimientos zootécnicos y mayor número de Bífidobacterias y Lactobacilos y menor de *E. coli* en ciego e intestino a la dosis de 0.4%, pero no a la de 0.2%.

Francia, se comparó el efecto de un fructooligosacarido, FOS (0,6 g / kg), antibiótico (avilamicina) y un tratamiento con trigo integral comparado con un control negativo en pollos de engorde durante un periodo de 42 días. Se encontró un efecto similar en la conversión alimenticia en el tratamiento con el antibiótico comparado con el FOS, y una mejoría significativa de estos dos aditivos en relación al control y la dieta con trigo integral, a pesar que los pollos a los que se les suministró el FOS tuvieron unos consumos inferiores al resto de tratamientos durante las tres primeras semanas. Se encontró una disminución significativa de aerobios mesófilos y bacterias coliformes en los tratamientos con antibiótico y FOS en el ciego y cloaca a las tres semanas de edad, y un aumento numérico, pero no significativo en la población de Lactobacillus comparados con el (Williams y col. 2008).

Se evaluó la Mezcla de un Prebiotico y un Acido Orgánico en la Salud Intestinal y parámetros productivos de pollos de engorde. Las dietas se elaboraron en la planta de alimentos del CBA (Centro de Biotecnología Agropecuario), del SENA de Mosquera.

Se formularon cinco dietas experimentales una para iniciación del día 1 al 21 y otra para engorde del día 22 al 42. Se conformaron los siguientes tratamientos:

Tratamiento 1: Sin la adición de los aditivos experimentales

Tratamiento 2: Con adición de Bacitracina de Zn (15%) como promotor de

Crecimiento a un 0,03% de la ración.

Tratamiento 3: Utilización de 0,5% de ácido Fumárico en la ración.

Tratamiento 4: Utilización de 0,06% de Fructooligosacarido FOS en la ración.

Tratamiento 5: Utilización de 0,06% de FOS más 0,5% de ácido Fumárico

En el consumo de alimento y peso vivo no se encontraron diferencias significativas entre los diferentes tratamientos. Los pesos finales obtenidos por tratamiento fueron inferiores en el control (1820,17 g/ave) con diferencias estadísticas (P<0,05) con respecto a los tratamientos con aditivos. El antibiótico y la mezcla de aditivos obtuvieron los pesos mayores (1955,10 g y 1946,41 g) respectivamente con diferencias estadísticas (P<0,05) con respecto al ácido orgánico y prebiótico. Las diferencias de peso vivo de las aves que recibieron el antibiótico con las que recibieron el ácido orgánico y el prebiótico fueron de 2,40% y 1,89% respectivamente.

Variable conversión alimenticia obtuvo diferencias significativas (P<0,05) las cuales correspondieron a los pesos vivos obtenidos dado los consumos de alimento similares. La mejor conversión alimenticia fue para el antibiótico con 1, 88 con diferencias significativas (P<0,05) comparadas al control 2,02, estas diferencias en porcentaje corresponden al 6,58%. No se encontró diferencias significativas entre el antibiótico y la mezcla de los dos aditivos (ácido orgánico y prebiótico). Se encontró diferencias significativas (P<0,05) en la conversión alimenticia para el antibiótico, comparado con el ácido orgánico, prebiótico y control (Jaramillo 2011, mencionados por Thomas, 2013).

2.8.2 PROBIOTOS

Se realizó la Comparación del Rendimiento Productivo de Pollos de Carne Suplementados con un Probiótico versus un Antibiótico El estudio comprendió tres tratamientos de 111 aves por grupo, con tres repeticiones de 37 aves por réplica:

- Tratamiento 1: Sin aditivo en el alimento.
- Tratamiento 2: Con antibiótico Zinc Bacitracina en el alimento (500 g/TM en el preinicio e inicio, y 300 g/TM en el alimento de crecimiento y acabado).

- Tratamiento 3: Probiótico (Biomin® Poultry 5 Star), vía agua de bebida los 3 primeros días y, luego, los días 10 a 12, 22 a 24 y 34 a 36 días de edad (las fechas corresponden a 3 días post cambio de alimento con excepción de la fase de finalizado). La dosis fue de 20 g/500 ml de agua para 1000 aves, disueltos en un volumen de agua suficiente para las tres tomas consecutivas diarias que se contaron a partir del día de cambio de alimento.

Los resultados de ganancia de peso, índice de conversión alimenticia e índice de eficiencia productiva se analizaron mediante análisis de varianza con arreglo factorial para los tres tratamientos, repeticiones y edades, usando el paquete estadístico SAS.

La mortalidad total se evaluó mediante la prueba de Chi Cuadrado para determinar asociación a los tratamientos El peso promedio al primer día de edad y durante las seis semanas de crianza, así como la ganancia de peso en el periodo experimental fue similar entre tratamientos. No obstante, las aves del Tratamiento 2 obtuvieron 14.7 y 21.8 g más de peso que las aves de los tratamientos 1 y 3.

El menor consumo de alimento se observó en el Tratamiento 3 (5026 g/ave) y el mayor ocurrió en el control (5254 g /ave) a la sexta semana de edad. No hubo diferencias estadísticas entre tratamientos sobre este parámetro, a pesar que el Tratamiento 3 mostró un consumo de alimento de 220 y 80 g menos por ave que los tratamientos 1 y 2. Las aves alimentadas con el probiótico mostraron 4% mejor eficiencia alimenticia, frente al grupo control y de 1.6% con los alimentados con el antibiótico, indicando que la alteración metabólica por acción de la exclusión competitiva del probiótico incrementó la actividad digestiva. (Osorio et al, 2010; mencionados por Thomas, 2013).

2.8.3 TRABAJOS EXPERIMENTALES COMBINANDO PREBIÓTICOS, PROBIOTOS, INMUNOESTIMULANTES Y ENERGIZANTES

Se ha evaluado el efecto de la mezcla de aditivos en diferentes investigaciones, los cuales han obtenido sinergismos que mejoran los resultados frente a utilizarlos solos, es el caso de probióticos con prebióticos, extractos vegetales con ácidos orgánicos, enzimas con ácidos orgánicos, prebióticos con ácidos orgánicos, además de mezclas de ácidos orgánicos con mezclas de prebióticos y probióticos. La administración de Probióticos sólo es eficaz cuando al mismo tiempo se cubren sus necesidades para el crecimiento, por lo que los productos simbióticos (probiótico + prebiótico) serían la solución más adecuada (Apalajahti y Kettunen, 2006). En este sentido Bozkurt y col (2005) encontraron un efecto aditivo sobre la mejora del índice de conversión al combinar Lactobacillus con manano-oligosacáridos en pollos criados hasta los 42 días. Así mismo Newman (2002) indica que se ha obtenido más éxito en la exclusión de Salmonella mediante la combinación de FOS y probióticos.

Un trabajo de investigación realizado por **Bozkurt y col, 2005**, evaluaron la combinación de ácidos orgánicos, prebióticos y probióticos en pollos de engorde, donde mostraron efectos sinérgicos al utilizarlos mezclados. Así mismo **Midilli y col.**, (2008), evaluaron el comportamiento productivo y niveles de inmunoglobulina G en sangre, utilizando la combinación de un probiótico y un prebiótico (MOS) combinado, comparado al utilizarlos solos. Los resultados en los parámetros productivos como la ganancia de peso, consumo, rendimiento en canal fueron estadísticamente iguales, sin embargo la conversión alimenticia tuvo efectos significativos a favor de la mezcla del probiótico mas prebiótico, comparados al utilizarlos solos en la ración.

También se ha evaluado el efecto de un antibiótico promotor de crecimiento (Flavomicin, 650 g/T., un Probiótico (Primalac) 900 g/T, Prebiótico (Biolex-MB) 2000 g/t y la mezcla de Probiótico mas Prebiótico (Simbiótico) 2000 g/T, evaluando la ganancia de peso, conversión alimenticia, características de la canal, y parámetros bioquímicos como el Colesterol, triglicéridos, VLDL, LDL y HDL. Los resultados obtenidos muestran unas mejoras en la ganancia de peso y conversión en el tratamiento con la mezcla del probiótico mas prebiótico en todos los tratamientos incluyendo el tratamiento con antibiótico. Los rendimientos en canal fueron también mejores para la mezcla y los triglicéridos, colesterol y VLDL fueron menores en relación con los otros tratamientos, lo

que demostró que esta mezcla puede sustituir al antibiótico promotor de crecimiento (Ashayerizadeh y col., 2009).

En otro trabajo de investigación se comparó el efecto de un prebiótico, un ácido orgánico (Acido fórmico), un probiótico y la combinación de éstos, comparados con un control en pollos de engorde. Los resultados obtenidos mostraron una mejor ganancia de peso y conversión alimenticia de los diferentes aditivos comparados con el control. Encontraron una menor mortalidad en el tratamiento control, comparados con los otros. En cuanto a la mezcla de los diferentes aditivos se encontró un efecto sinérgico cuando se combinó un probiótico con un prebiótico (MOS), en la variable conversión alimenticia de 1,484 kg/kg, comparado con la mezcla del ácido orgánico con el prebiótico de 1,513 respectivamente. Sin embargo la combinación de estos aditivos fueron superiores en la conversión y ganancia de peso comparado a cuando se utilizaron solos (Bozkurt y col, 2005).

III. MATERIALES Y METODOS

3.1 UBICACIÓN Y DURACION EXPERIMENTAL.

El presente trabajo experimental se realizó en el Fundo "Los Chapiques", ubicada en carretera San José Km 2; provincia de Chiclayo, Región Lambayeque.

Para el trabajo se consideró un periodo experimental de 10 semanas habiéndose iniciado el 15 de septiembre del 2016 y concluido el 24 de noviembre del mismo año.

3.2. MATERIALES EXPERIMENTALES

3.2.1 MATERIAL BIOLOGICO

Estuvo constituida por 45 pavos machos de la línea Hybrid, divididos en 03 grupos, y 15 repeticiones (pavos).

3.2.2 MATERIAL NUTRICIONAL

Biomodulador contiendo prebióticos, probióticos, inmunoestimulantes y energizantes

3.2.3 TRATAMIENTOS EVALUADOS.

Lo constituyeron 03 tratamientos:

T0: Agua sin Biomodulador.

T1: Agua con 1 ml/L de Biomodulador.

T2: Agua con 2 ml/L de Biomodulador.

3.3. INSTALACIONES Y EQUIPOS

EQUIPO E INSTRUMENTAL:

- Baldes para limpieza.
- Espátula para limpieza.
- 6 comederos de tolva.
- 3 bebederos lineal
- 1 balanza tipo reloj de 10kg.
- 1 balanza digital

Los pavos utilizados para la fase experimental fueron alojados en un área del galpón de cría para pavos de carne, con un área de 42m², en la cual se conformaron 3 corrales. El piso fue de tierra cubierto con una capa de pajilla de arroz de 5cm. de espesor, a fin de evitar la humedad.

Cada corral asignado para 15 pavos contaba con su respectivo comedero, conteniendo la cantidad de alimento asignado. Así mismo se contó con su correspondiente bebedero lineal de 1.40m que garantizaba un aporte normal de agua fresca.

Con respecto al control de cambios de peso vivo, se contó con una balanza digital y para el control de suministro y residuos de las raciones con una balanza gramera.

Así mismo, se consideró el uso de registros de doble entrada para las evaluaciones de pesos semanales, consumo de raciones y demás observaciones en dichas fases experimentales.

3.4 METODOLOGIA EXPERIMENTAL.

3.4.1 SISTEMA DE ALIMENTACION Y CONTROL DE PESOS VIVOS.

Los pavos tuvieron un acceso permanente a las raciones correspondientes considerando las etapas de inicio y crecimiento y de acuerdo con los requerimientos nutritivos establecidos para la línea Hybrid, para garantizar un consumo ad libitum, añadiéndose cantidades de alimentos definidos previa retirada y control de los rechazos del día anterior.

Las raciones fueron isocaloricas e isoproteicas, con insumos propios de la zona.

En cuanto al consumo de agua esta fue ad libitud y con la adición correspondiente del Biomodulador oral según tratamiento (T0 sin Biomodulador, T1 con 1ml de Biomodulador por litro de agua, y T2 con 2 ml de Biomodulador por litro de agua)

Con respecto al peso individual de los pavos, se inició el primer día de la fase experimental, posteriormente se efectuaba el pesaje semanalmente (estando los animales en ayunas), hasta la culminación de la fase experimental a los 10 semanas de edad.

3.4.2 DATOS REGISTRADOS.

Durante la fase experimental se controlaron los siguientes datos, los mismos

que permitirían luego su análisis e interpretación:

1. Peso vivo inicial, g.

2. Peso semanales, g.

3 Pesos vivos finales, g.

4. Incrementos semanales y totales de peso vivo, Kg..

5. Consumo de raciones Kg./animal/periodo.

6. Gasto total en alimentación, S/. animal / periodo.

3.4.3 CONTROL SANITARIO

Se dispuso a la entrada del galpón un recipiente conteniendo cal viva para la

desinfección respectiva.

3.4.4 DISEÑO EXPERIMENTAL Y ANALISIS ESTADÍSTICO.

En el presente estudio se empleó el Diseño Completamente Randomizado

(DCR), cada tratamiento estuvo constituido por 15 pavos.

El modelo matemático usado fue

 $Kij = \mu + Ti + eij$

Dónde:

Kij= Respuesta del tratamiento.

 μ = Media poblacional.

Ti= Efecto del tratamiento.

eij= Error experimental.

23

CUADRO Nº 01: ESQUEMA DEL ANALISIS DE VARIANZA (ANAVA)

FUENTE DE	GRADO	SUMA	CUADRADO	F
VARIACION	LIBERT.	CUADRADO	MEDIO	CALCULADA
		A		
TRATAMIENTO	2	$\Sigma \underline{xi.^2} - \underline{x^2i.}$	<u>ScTrat</u>	CM.Trat
		i=1 n N	Gl.Trat	CM.error
ERROR	42	ScT - ScTRAT	Sc.E	
			Gl.Error	
TOTAL	44	Σ x^2ij - $(xij)^2$		
		N		

3.7. CÁLCULO DE LA CONVERSION ALIMENTICIA (CA) y MÉRITO ECONÓMICO (ME).

Dichos parámetros se determinaron a través de las siguientes relaciones:

C.A = Consumo de alimento, Kg.

Incremento de peso vivo, Kg.

M.E= Gastos en alimentación S/.

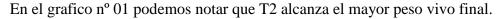
Ganancia de peso vivo, Kg.

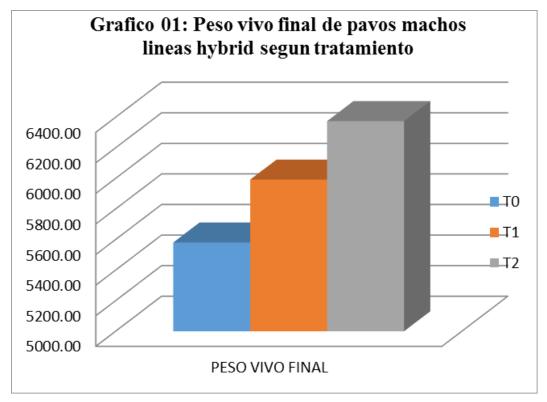
IV. RESULTADOS Y DISCUSIÓN.

4.1 COMPORTAMIENTO DEL PESO VIVO

En el cuadro nº 02 se expone la información resumida del comportamiento de peso vivo según tratamiento.

Cuadro Nº 02: Efecto de los prebioticos, probioticos, inmunoestimulantes y energizantes sobre la ganancia de peso vivo de pavos de la línea Hybrid.


ODSEDVA CIONES	TI	TRATAMIENTOS		
OBSERVACIONES	Т0	T1	T2	
N° ANIMALES	12	12	12	
PESO INICIAL	66.13	66.13	66.13	
1ra semana	145.00	150.00	167.00	
2da semana	315.00	348.00	353.00	
3ra semana	554.67	588.00	597.67	
4ta semana	890.00	1010.00	1073.33	
5ta semana	1543.33	1680.00	1773.33	
6ta semana	2100.00	2280.00	2446.67	
7ma semana	2946.67	3186.67	3366.67	
8va semana	3593.33	3916.67	4253.33	
9na semana	4564.00	4942.67	5290.67	
PESO VIVO FINAL	5580.67	5992.00	6374.67	
DIFERENCIA RESPECTO A T1				
(%)		1.36	5.54	


Al analizar los promedios de los pesos vivos iniciales mediante la prueba de homogeneidad de varianza de Barlett (apéndice n° 01), se determinó que los pavos prevenían de muestras homogéneas en sus varianzas, por lo tanto cualquier variación encontrada entre los grupos experimentales se debía al tratamiento aplicado.

En lo que respecta a los pesos vivos finales, podemos ver que el mayor peso fue para T2 (6374.67g), seguido de T1 (5992g), el menor peso fue para T0 (5580.67.00g).

Al realizar el análisis de varianza correspondiente, se encontró diferencia significativa entre los tratamientos (cuadro anexo nº 21)

Al obtener una respuesta significativa en los resultados entre los tratamientos observados se procedió a realizar un análisis de comparaciones múltiples de Duncán del cual se obtuvo que T2, T1 y T0 son diferentes entre sí.

Los resultados encontrados nos demuestran que la combinación de productos como probioticos, prebióticos, energizante e inunoestimulante mejoran los parámetros zootecnicos de pavos como lo es el peso de pavos machos hibryd, ya que mantiene la salud intestinal (funcionamiento óptimo del tracto intestinal) logrando maximiza el desempeño productivo de las aves, aspecto primordial en la

crianza de pavos permitiéndole alcanzar el peso esperado para la línea genética en cuestión.

Así mismo potencializa el sistema inmune protegiendo al huésped (en este caso los pavos) de la muerte, ya que siempre se está en contacto con bacterias oportunistas patogénicas, virus, hongos, protozoarios y ciertas toxinas, a pesar de las medidas de bioseguridad que se mantenga.

Estos resultados coinciden con investigaciones realizadas donde se han evaluado el efecto de la mezcla de aditivos, los cuales han obtenido sinergismos que mejoran los resultados frente a utilizarlos solos, siendo así que la administración de Probióticos sólo es eficaz cuando al mismo tiempo se cubren sus necesidades para el crecimiento, por lo que los productos simbióticos (probiótico mas prebiótico) serían la solución más adecuada (**Apalajahti y Kettunen, 2006**). Así mismo fortalece lo manifestado por **Newman (2002)** quien indica ha obtenido más éxito en la exclusión de Salmonella mediante la combinación de FOS y probióticos.

Así mismo

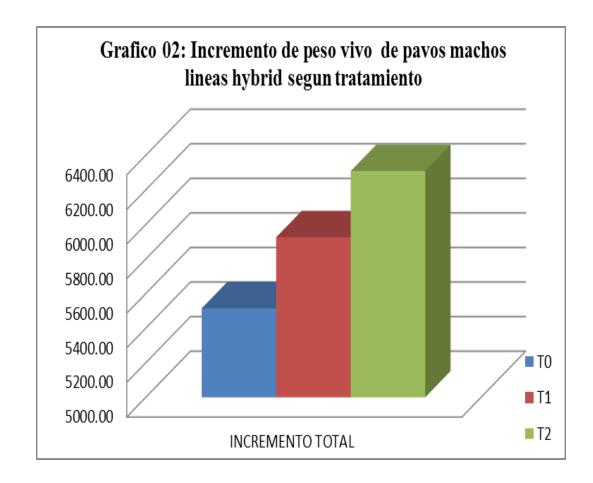
También con lo encontrado por **Ashayerizadeh y col., 2009,** quienes al evaluar el efecto de un antibiótico promotor de crecimiento (Flavomicin, 650 g/T., un Probiótico (Primalac) 900 g/T, Prebiótico (Biolex-MB) 2000 g/t y la mezcla de Probiótico mas Prebiótico (Simbiótico) 2000 g/T, evaluando la ganancia de peso, se muestra mejoras en la ganancia de peso con la mezcla del probiótico mas prebiótico en todos los tratamientos incluyendo el tratamiento con antibiótico.

En otro trabajo de investigación se comparó el efecto de un prebiótico, un ácido orgánico (Acido fórmico), un probiótico y la combinación de éstos, comparados con un control en pollos de engorde. Los resultados obtenidos mostraron una mejor ganancia de peso de los diferentes aditivos comparados con el control. Sin embargo la combinación de estos aditivos fueron superiores ganancia de peso comparado a cuando se utilizaron solos (**Bozkurt y col, 2009**).

4.2 INCREMENTO DE PESO VIVO.

En el cuadro n°03 se expone la información resumida referente al incremento de peso vivo según tratamiento.

CUADRO Nº 03: Efecto de los prebioticos, probioticos, inmunoestimulantes y energizantes sobre el incremento de peso vivo de pavos de la línea Hybrid.


OBSERVACIONES	TRATAMIENTOS			
OBSERVACIONES	ТО	T1	T2	
N° ANIMALES	15	15	15	
PESO INICIAL	66.13	66.13	66.13	
PESO VIVO FINAL	5580.67	5992.00	6374.67	
INCREMENTO TOTAL	5514.53	5925.87	6308.53	
DIFERENCIA RESPECTO A				
T1 (%)		7.46	14.40	

Así podemos observar que el mayor incremento de peso total lo obtuvo T2 (6308.53 g), seguido de T1 (5514.53 g); el menor incremento de peso fue para T0 (5514.53 g.) que estadísticamente fue significativa entre los tratamientos (p 0.05) (cuadro anexa N° 31).

Al obtener una respuesta significativa en los resultados entre los tratamientos observados se procedió a realizar un análisis de comparaciones múltiples de Duncán del cual se obtuvo que T2, T1 y T0 son diferentes entre sí.

Estos resultados refuerzan lo manifestado en la ganancia de peso, obteniendo mejores resultados cuando se utiliza la combinación de productos como probioticos, prebióticos, energizante e inunoestimulante.

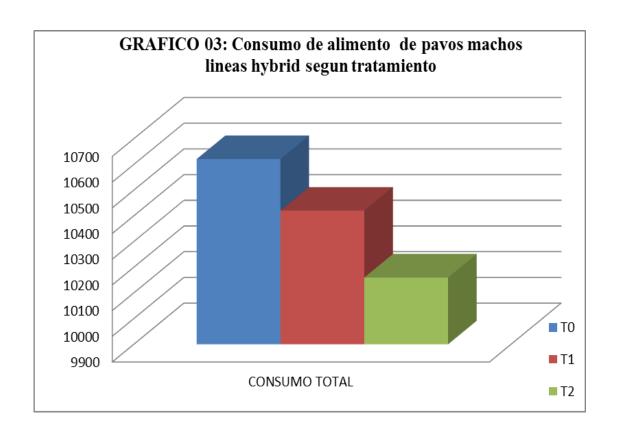
En el grafico nº 02 podemos observar que T1 y T2 tuvieron mayores incrementos.

4.3 CONSUMO DE ALIMENTO

En el cuadro nº 04 .se expone la información resumida del consumo de alimento según tratamiento.

CUADRO Nº 04: Efecto de los prebioticos, probioticos, inmunoestimulantes y energizantes sobre el consumo de alimento de pavos de la línea Hybrid.

SEMANA EXPERIMENTAL	Т0	T1	T2
1ra	171	175	170
2da	290	285	280
3ra	470	470	460
4ta	650	620	610
5ta	760	740	720
6ta	980	970	950
7ma	1540	1480	1390
8va	1620	1590	1550
9na	1980	1960	1950
10ma	2160	2130	2080
TOTAL	10621	10420	10160
PROMEDIO	1180.11	1157.78	1128.89


En cuanto al consumo de alimento total, el mayor consumo fue para T0 (10621g), seguido por T1 (10420g), menor consumo fue para T2 (10160g).

Al realizar el análisis de varianza correspondiente no se encontró diferencia significativa entre los tratamientos (cuadro anexo n°33).

Es sabido que los pollos y pavos tienen un aparato digestivo simple, en donde hay escaso lugar para una flora intestinal que ayude a la digestión del alimento, por tanto, estas aves, dependen de las enzimas secretadas en cantidades apropiadas por el aparato digestivo para degradar moléculas alimenticias complejas a sustancias más simples capaces de ser absorbidas. Cuando el alimento consumido no puede ser digerido por las enzimas presentes en el tubo digestivo, el alimento no es útil como

fuente de nutrientes para el ave, por tal razón aunque los consumos de alimento son iguales en los tres tratamientos las ganancias de peso e incremento de peso son diferentes ya que los probioticos, prebióticos, energizante e inunoestimulante ayudan a mantener el equilibrio intestinal del ave, la cual siempre es perturbada y va sufrir agresiones por el estrés (clima, despique, pesajes, manejos varios), desequilibrios nutricionales (debido a: desbalance de la fórmula, mal manejo del grano, alta carga bacteriana en el alimento y micotoxinas, que afectan la salud intestinal), vacunaciones, y sustancias que perturban el valor del pH del intestino. Entonces, los factores que perturban el equilibrio de la flora intestinal, tienen una repercusión en la salud del animal.

Siendo así estos resultados coinciden con lo encontrado por **Midilli y col.**, (2008), quienes al evaluar el comportamiento productivo y niveles de inmunoglobulina G en sangre, utilizando la combinación de un probiótico y un prebiótico (MOS) combinado, comparado al utilizarlos solos, los resultados en los parámetros productivos como consumo fueron estadísticamente iguales

4.4 CONVERSION ALIMENCIA Y MERITO ECONOMICO EN LOS TRATAMIENTOS.

La conversión Alimenticia y Merito Económico, se muestra en el cuadro nº 5.

CUADRO Nº 5: Efecto de los prebioticos, probioticos, inmunoestimulantes y energizantes sobre la conversión alimenticia y merito económico de pavos de la línea Hybrid.

	TRATAMIENTO		
OBSERVACION	T0	T1	T2
GANANCIA DE PESO Kg	5.51	5.93	6.31
CONSUMO DE ALIMENTO			
* INICIO	3.32	3.26	3.19
*CRECIMIENTO	7.30	7.16	6.97
* CONSUMO TOTAL Kg/a/p	10.6	10.4	10.2
GASTO ALIMENTO Y TRATAMIENTO (BIOMODULADOR)			
* INICIO	6.23	6.11	5.98
*CRECIMIENTO	13.14	12.89	12.55
*BIOMODULADOR ORAL	0.0	1.80	3.60
* GASTO TOTAL S/. /a/p	19.37	20.80	22.13
CONVERSION ALIMENTICIA	1.9260	1.7584	1.6105
MERITO ECONOMICO	3.512	3.510	3.508

Podemos apreciar que la mejor conversión la obtuvo T2 (1.61); seguido de T1 (1.758), y finalmente T0 (1.926). Así mismo tenemos que el mejor merito económico se presentó cuando el nivel del Biomodulador oral suministrado fue de 2ml/litro de agua consumida (T2) con un índice de 3.508 luego le sigue el nivel 1ml/litro de agua consumida (T1) con un índice de 3.510, y finalmente el peor merito económico fue para el testigo (T0) con 3.512.

Con estos resultados se confirma la mejora del efecto de la mezcla de aditivos (los sinergismos mejoran los resultados frente a utilizarlos solos) coincidiendo con lo

manifestado por **Bozkurt y col** (2005) quienes encontraron un efecto aditivo sobre la mejora del índice de conversión al combinar Lactobacillus con manano-oligosacáridos en pollos criados hasta los 42 días y lo manifestado por **Newman** (2002) quien indica que se ha obtenido más éxito en la exclusión de Salmonella mediante la combinación de FOS y probióticos.

Así mismo lo encontrado por **Midilli y col.**, (2008), quienes al evaluar el comportamiento productivo y niveles de inmunoglobulina G en sangre, utilizando la combinación de un probiótico y un prebiótico (MOS) combinado, comparado al utilizarlos solos, obtuvieron que la conversión alimenticia tuvo efectos significativos a favor de la mezcla del probiótico mas prebiótico, comparados al utilizarlos solos en la ración.

También se encontraron mejoras en la conversión alimenticia cuando:

- Se evaluó el efecto de un antibiótico promotor de crecimiento (Flavomicin, 650 g/T., un Probiótico (Primalac) 900 g/T, Prebiótico (Biolex-MB) 2000 g/t y la mezcla de Probiótico mas Prebiótico (Simbiótico) 2000 g/T, se obtuvo mejor conversión alimenticia en el tratamiento con la mezcla del probiótico mas prebiótico que en todos los tratamientos incluyendo el tratamiento con antibiótico., lo que demostró que esta mezcla puede sustituir al antibiótico promotor de crecimiento (Ashayerizadeh y col., 2009).
- Se comparó el efecto de un prebiótico, un ácido orgánico (Acido fórmico), un probiótico y la combinación de éstos, comparados con un control en pollos de engorde. mejor conversión alimenticia de los diferentes aditivos comparados con el control. Encontraron. En cuanto a la mezcla de los diferentes aditivos se encontró un efecto sinérgico cuando se combinó un probiótico con un prebiótico (MOS), en la variable conversión alimenticia de 1,484 kg/kg, comparado con la mezcla del ácido orgánico con el prebiótico de 1,513 respectivamente. Sin embargo la combinación de estos aditivos fueron superiores en la conversión comparado a cuando se utilizaron solos (Bozkurt y col, 2009).

V CONCLUSIONES

Considerando los resultados expuestos y bajo las condiciones en que se ejecutó el presente experimento, se concluye:

- El mejor peso vivo final se obtuvo en el tratamiento que se suministró 2ml de biomodulador/ 1 litro de agua correspondiente al T2 (6374.67 g), siendo estadísticamente significativo.
- El mejor incremento de peso lo obtuvo el T2 (6308.53 g) encontrándose diferencia significativa entre los tratamientos.
- El menor consumo de alimento fue para T2 (10160 g). no encontrando diferencia significativa entre los tratamientos.
- La conversión alimenticia es mejorada con suministro de aguas que llevan 2ml de biomodulador/ litro de agua, T2 (1.6105).
- El mejor merito económico fue para T2 (3.508).

VI RECOMENDACIONES:

- 1. Emplear el biomodulador en otras aves como pollos y gallinas.
- 2. Hacer investigación reduciendo los días de suministro del biomodulador oral.

VII. RESUMEN

En una granja del distrito de San José se evaluó la incorporación del Biomoduador oral Reimark compuesto por prebióticos, probióticos, inmunoestimulantes y energizantes suministrado en el agua de bebida. Para tal estudio se emplearon 45 pavos machos de 1 día de edad de la línea Hybrid distribuidos en 3 grupos de 15 cada uno; utilizando un Diseño Completamente Randomizado (DCR).

Se consideraron los siguientes tratamientos: T0 (testigo), T1 (1ml de biomodulador/ litro de agua) T2 (2ml de biomodulador/ litro de agua), además de utilizar raciones isocalóricas e isoproteícas. Al termino de las 10 semanas que terminó el experimento los consumos de alimento/animal/ período fueron de 10621g.; g.; 10420g. y 10621g., para T0, T1, y T2 respectivamente no existiendo diferencia significativamente los (p≥ 0.05) tratamientos. Los incrementos de peso totales gramo/animal/periodo fueron 5514.53g.; 5925.87g. y 6308.53g para T0, T1, y T2 respectivamente, encontrándose efecto significativo frente al testigo, ademas podemos determinar que T1 y T2 mejoraron en 1.36 y 5.54% frente al testigo, habiendo diferencia significativa frente a T3. La conversión alimenticia obtenida fue de 1.92; 1.75; y 1.61 para T0, T1, y T2 respectivamente, apreciándose que la mejor conversión alimenticia la obtuvo el T2. Con respecto al mérito económico se obtuvieron los siguientes resultados 3.512; 3.51; 3.508 para T0, T1, y T2 respectivamente observándose que el menor merito económico fue para T2.

VIII. REFERENCIAS BIBLIOGRAFICAS.

- Apajalahti J. Kettunen, A 2006. Microbes of the chicken gastrointestinal tract. In: Avian Gut Function in Health an Disease. CAB International UK. Pp. 124-137.
- Ashayerizadeh O, B Dastar, M Shams Shargh, A Ashayerizadeh, M Mamooee. 2009.
 Influence of antibiotic, prebiotic and probiotic supplementation to diets on carcass characteristics, hematological indices and internal organ size of young broiler chickens. *J Anim Vet Adv* 8, 1772-1776.
- Barragán, J. 2000. El buche como un importante elemento de control de patógenos en canales de pollo. 5p. Consultado el 08-03-2011
 http://www.wpsa-aeca.es/aeca_imgs_docs/wpsa1183969852a.pdf
- Bernabe, L.; Centena, L.; Ramon, A. 2003. Proyecto de producción y comercialización del Camu Camu y su impacto socioeconomic – financier en el sector Shagal de la parroquia Molleturo en la provincia de Azuay. Tesis para la obtención del titulo de Economista. Guayaquil Ecuador.
- Bozkur M, K. Küçükyılmaz, A. U. Çatlı, M. Çınar, Poultry Research Institute. 2005.
 The Effect of Dietary Supplementation of Prebiotic, Probiotic and Organic Acid, either Alone or Combined, on Broiler Performance and Carcass Characteristics.
- Cunninghan, J. Bradley G. 2009. Fisiología Veterinaria. Cuarta edición.
 Madrid.España
- Granados, J. 2008. Factores que influyen en la Integridad Intestinal del Broiler.
 Listado de Memorias Seminario AMEVEA. Quito-Ecuador. 224p.

Milian, G. 2005. Empleo de probióticos a base de *Bacillusspy* sus endosporas en la producción avícola. Instituto de Ciencia Animal. Apartado Postal 24. San José de las Lajas, La Habana, 16p.
 http://www.bibliociencias.cu/gsdl/collect/libros/index/assoc/HASH01b8.dir/doc.pdf.

- Neewman, K. 2002. Cómo funcionan los oligosacáridos en la producción animal.
 Feeding Times 7 (1):3-5.
- Lerzundy, J. 2001. Sistema inmune del pollo (en línea). Consultado 20 jun. 2007. Disponible en www.ppca.com.ve/va/articulos/va37pag08.html.
- López, N.; Cuzon, G.; Gaxiola, G.; Taboada, G.; Valenzuela, M., Pascual, C.; Sanchez, A.; Rosas, C. 2003. Physiological, nutritional, and immunological role of dietary â 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture. 224: 223-243
- Palacios, M. 2009. Uso de anticoccidiales y promotores de crecimiento en el desarrollo de la salud intestinal del broiler. Lima-Perú. 15P.
 htt://www.ameveaecuador.org/datos/USO%20DE%20ANTICOCCIDIALES%20Y%20PROMOTORES%20DE%20CRECIMIENTO%20EN%20EL.pdf.
- Peng, L., Gary, S., Delbert, M., Michael, E., Susmita, P., Frank, L., and Addison, L. 2007. Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal icrobiota composition and immunity characteristics of pacific whiteshrimp, *Litopenaeusvannamei*, Cultured in a Recirculating System. Journal of Nutrition, 137: 2763-2768.
- Raa, J. 2000. The use of immune-stimulants in fish and shellfish feeds. En: Cruz Suarez, L.; Ricquemarie, D.; Tapia-Salazar, M.; Olvera-Novoa, M.; Civera-Cerecedo,

- R. Avances en nutrición acuícola V. Memorias del V Symposium Internacional de nutrición acuícola. México.
- Reinmark. Biomodulador oral. Consultado 10-06-2016
 http://reinmark.com/producto/biomodulador_oral_soluble_aves
- Salvador, F; Cruz, D. 2009. Nutra céntricos. Universidad Autónoma de Chihuahua.
 Facultad de Zootecnia. México D.F. 88p.
- Tizard, I. Inmunología Veterinaria. 6 ed. México, DF, Editorial McGraw HillInteramericana. p. 238 239.
- Tomas, C. 2013. Aditivos en la alimentación de aves. Monografía para optar título de Ingeniero Zootecnista. Universidad Nacional José Faustino Sánchez Carrión-Huacho.
- Williams, J, Mallet, S, Leconte, M, Lessire, M y Gabriel, I. 2008. The effects of fructooligosaccharides or whole wheat on the performance and digestive tract of broiler chickens. *Br. Poutl. Sci.*, 49: 329-339.
- Xu, Z.R.C., Hu, M. S., Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary frutooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82:1030–1036.

IX APENDICE

APÉNDICE Nº 01: PRUEBA DE BARLET.

$$X^2o = 2.3026 \ \underline{q}$$
 C

Donde:

$$q \; = (N-a)\; log 10\; S^2p - \Sigma(n1-1\;)\; log\; 10\; S^2i$$

$$c=1\ 1/\ 3(a\text{-}1)$$
 ($\Sigma(n1\ \text{-}1)\ \text{-}^{\text{-}1}$ - $(N-a\)\text{-}^{\text{-}1}$

$$S^{2}p = \frac{\Sigma(ni - 1)S^{2}i}{(N - a)}$$

$$S^2p: 1349.2$$

$$S^2p = 32.1238$$

$$q = 0.0254746$$

$$c = 1.1269841$$

$$X^{2}o = 2.3026 \quad (0.0254746/1.1269841)$$

$$X^2$$
o =0.05205

$$X^{2}o < X (0.05, 2)$$
 se acepta $\mu 0 = \mu 1$

$$X(0.05, 2) = 5.99$$

$$X^2$$
o < X (0.05, 3)

0.05205 < **5.99** : se acepta
$$\mu$$
0 = μ 1

CUADROS ANEXOS

Cuadro anexo nº 01: PESOS INICIALES

1			
	Т0	T1	T2
1	60	59	60
2	60	60	60
3	60	60	60
4	60	61	61
5	62	62	61
6	62	62	62
7	65	65	62
8	65	65	65
9	65	68	68
10	68	68	68
11	70	70	70
12	70	70	70
13	75	72	75
14	75	75	75
15	75	75	75
TOTAL	992	992	992
PROM	66.1	66.1	66.1

Cuadro anexo nº 02: PESO DE LA 1RA SEMANA

	Т0	T1	T2
1	130	140	155
2	135	140	155
3	135	140	155
4	140	145	160
5	140	145	160
6	140	150	160
7	145	150	160
8	145	150	170
9	145	150	170
10	150	150	170
11	150	155	175
12	150	155	175
13	155	160	180
14	155	160	180
15	160	160	180
TOTAL	2175	2250	2505
PROM	145.0	150.0	167.0

Cuadro anexo nº03: ANÁLISIS DE VARIANZA DE PESO DE LA 1RA SEMANA

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	2175	145	71.42857143
Columna 2	15	2250	150	50
Columna 3	15	2505	167	92.14285714

ANÁLISIS DE VARIANZA

Origen de las	Suma de		Promedio de los	_		Valor crítico
variaciones	cuadrados	libertad	cuadrados	F	Probabilidad	para F
Entre grupos Dentro de los	3990	2	1995	28.02341137	1.9E-08	3.219942
grupos	2990	42	71.19047619			
Total	6980	44				

Cuadro anexo nº 04: PESO DE LA 2DA SEMANA

	ТО	T1	T2
1	300	330	330
2	300	330	340
3	310	340	340
4	310	340	345
5	310	340	350
6	310	350	350
7	310	350	350
8	315	350	355
9	315	350	355
10	320	350	360
11	320	355	360
12	325	355	360
13	325	360	365
14	325	360	365
15	330	360	370
TOTAL	4725	5220	5295
PROM	315.00	348.00	353.00

Cuadro anexo nº05: ANÁLISIS DE VARIANZA DE PESO DE LA 2DA SEMANA

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	4725	315	82.14286
Columna 2	15	5220	348	99.28571
Columna 3	15	5295	353	120.7143

ANÁLISIS DE VARIANZA

Origen de las	Suma de cuadrados		Promedio de los	F	Probabilidad	Valor crítico
variaciones	cuaaraaos	libertad	cuadrados	Г	Probabiliaaa	para F
Entre grupos	12790	2	6395	63.49645	2E-13	3.219942
Dentro de los						
grupos	4230	42	100.7142857			
Total	17020	44				

Cuadro anexo nº 06: PESO DE LA 3RA SEMANA

	ТО	T1	T2
1	540	580	590
2	540	580	590
3	540	580	590
4	550	580	590
5	550	580	595
6	550	580	595
7	550	580	595
8	550	590	595
9	550	590	600
10	560	590	600
11	560	590	600
12	560	600	600
13	570	600	605
14	570	600	610
15	580	600	610
TOTAL	8320	8820	8965
PROM	554.67	588.00	597.67

Cuadro anexo nº7: ANÁLISIS DE VARIANZA DE PESO DE LA 3RA SEMANA DE CUYES GESTANTES

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	8320	554.6666667	140.9524
Columna 2	15	8820	588	74.28571
Columna 3	15	8965	597.6666667	45.95238

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabili dad	Valor crítico para F
-	15267.77778	2	7633.888889	97 69196	1E-15	3.219942
Entre grupos	13207.77778	2	/033.000009	07.00100	1E-13	5.219942
Dentro de los	2656 66667	10	07.06240206			
grupos	3656.666667	42	87.06349206			
Total	18924.44444	44				

Cuadro anexo nº 8: PESO DE LA 4TA SEMANA

	Т0	T1	T2
1	800	900	1000
2	800	900	1000
3	800	950	1000
4	850	1000	1050
5	850	1000	1050
6	900	1000	1050
7	900	1000	1050
8	900	1000	1050
9	900	1050	1100
10	900	1050	1100
11	950	1050	1100
12	950	1050	1100
13	950	1050	1100
14	950	1050	1150
15	950	1100	1200
TOTAL	13350	15150	16100
PROM	890.00	1010.00	1073.33

Cuadro anexo nº9: ANÁLISIS DE VARIANZA DE PESO DE LA 4TA SEMANA

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	13350	890	3285.714
Columna 2	15	15150	1010	3285.714
Columna 3	15	16100	1073.333333	3166.667

ANÁLISIS DE VARIANZA

Origen de las	Suma de	Grados de	Promedio de			Valor crítico
variaciones	cuadrados	libertad	los cuadrados	$\boldsymbol{\mathit{F}}$	Probabilidad	para F
Entre grupos Dentro de los	260111.1111	2	130055.5556	40.06601	1.8E-10	3.219942
grupos	136333.3333	42	3246.031746			
Total	396444.4444	44				

Cuadro anexo nº 10: PESO DE LA 5TA SEMANA

	T0	T1	T2
1	1500	1600	1700
2	1500	1600	1700
3	1500	1600	1700
4	1500	1600	1700
5	1500	1650	1750
6	1550	1650	1750
7	1550	1650	1750
8	1550	1700	1750
9	1550	1700	1800
10	1550	1700	1800
11	1550	1700	1800
12	1550	1750	1850
13	1600	1750	1850
14	1600	1750	1850
15	1600	1800	1850
TOTAL	23150	25200	26600
PROM	1543.33	1680.00	1773.33

Cuadro anexo nº11: ANÁLISIS DE VARIANZA DE PESO DE LA 5TA SEMANA

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	23150	1543.333333	1380.952
Columna 2	15	25200	1680	4214.286
Columna 3	15	26600	1773.333333	3523.81

ANÁLISIS DE VARIANZA

Origen de las	Suma de	Grados de	Promedio de los			Valor crítico
variaciones	cuadrados	libertad	cuadrados	$\boldsymbol{\mathit{F}}$	Probabilidad	para F
Entre grupos	401444.4444	2	200722.2222	66.03394	1.1E-13	3.219942
Dentro de los						
grupos	127666.6667	42	3039.68254			
Total	529111.1111	44				

Cuadro anexo nº 12: PESO DE LA 6TA SEMANA

	T0	T1	T2
1	2000	2250	2350
2	2000	2250	2350
3	2000	2250	2350
4	2000	2250	2400
5	2050	2250	2400
6	2050	2250	2400
7	2100	2300	2400
8	2100	2300	2450
9	2100	2300	2450
10	2150	2300	2450
11	2150	2300	2500
12	2200	2300	2500
13	2200	2300	2500
14	2200	2300	2600
15	2200	2300	2600
TOTAL	31500	34200	36700
PROM	2100.00	2280.00	2446.67

Cuadro anexo nº13: ANÁLISIS DE VARIANZA DE PESO DE LA 6TA SEMANA

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	31500	2100	6428.571
Columna 2	15	34200	2280	642.8571
Columna 3	15	36700	2446.666667	6595.238

ANÁLISIS DE VARIANZA

Origen de las	Suma de	Grados de	Promedio de			Valor crítico
variaciones	cuadrados	libertad	los cuadrados	F	Probabilidad	para F
Entre grupos	901777.7778	2	450888.8889	98.97561	1.3E-16	3.219942
Dentro de los						
grupos	191333.3333	42	4555.555556			
Total	1093111.111	44				

Cuadro anexo nº 14: PESO DE LA 7MA SEMANA

	T0	T1	T2
1	2700	3050	3250
2	2700	3150	3250
3	2750	3150	3250
4	2800	3150	3250
5	2900	3150	3250
6	2950	3150	3250
7	2950	3200	3250
8	2950	3200	3250
9	3000	3200	3300
10	3000	3200	3400
11	3050	3200	3400
12	3100	3250	3500
13	3100	3250	3550
14	3100	3250	3600
15	3150	3250	3750
TOTAL	44200	47800	50500
PROM	2946.67	3186.67	3366.67

Cuadro anexo nº15: ANÁLISIS DE VARIANZA DE PESO DE LA 7MA SEMANA

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	44200	2946.666667	22309.52
Columna 2	15	47800	3186.666667	3023.81
Columna 3	15	50500	3366.666667	26309.52

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de los	1332000	2	666000	38.6888	3E-10	3.219942
grupos	723000	42	17214.28571			
Total	2055000	44				

Cuadro anexo nº 16: PESO DE LA 8VA SEMANA

	ТО	T1	T2
1	3500	3750	4100
2	3500	3800	4100
3	3500	3850	4150
4	3500	3850	4150
5	3500	3850	4200
6	3500	3900	4200
7	3500	3900	4200
8	3550	3900	4250
9	3600	3950	4250
10	3650	3950	4300
11	3650	3950	4300
12	3700	4000	4300
13	3750	4000	4300
14	3750	4000	4300
15	3750	4100	4700
TOTAL	53900	58750	63800
PROM	3593.33	3916.67	4253.33

Cuadro anexo nº17: ANÁLISIS DE VARIANZA DE PESO DE LA 8VA SEMANA

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	53900	3593.333333	11023.81
Columna 2	15	58750	3916.666667	8095.238
Columna 3	15	63800	4253.333333	20523.81

ANÁLISIS DE VARIANZA

	,					
Origen de las	Suma de	Grados de	Promedio de los			Valor crítico
variaciones	cuadrados	libertad	cuadrados	F	Probabilidad	para F
Entre grupos	3267444.444	2	1633722.222	123.633	2.5E-18	3.219942
Dentro de los						
grupos	555000	42	13214.28571			
Total	3822444.444	44				

Cuadro anexo nº 18: PESO DE LA 9NA SEMANA

	T0	T1	T2
1	4400	4750	5000
2	4400	4750	5100
3	4450	4800	5100
4	4500	4880	5150
5	4500	4900	5180
6	4520	4900	5200
7	4550	4960	5200
8	4560	4980	5280
9	4580	5000	5300
10	4600	5000	5400
11	4600	5000	5400
12	4650	5020	5450
13	4700	5050	5500
14	4700	5050	5500
15	4750	5100	5600
TOTAL	68460	74140	79360
PROM	4564.00	4942.67	5290.67

Cuadro anexo nº19: ANÁLISIS DE VARIANZA DE PESO DE LA 9NA SEMANA

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	68460	4564	11354.29
Columna 2	15	74140	4942.666667	11963.81
Columna 3	15	79360	5290.666667	31320.95

ANÁLISIS DE VARIANZA

Origen de las	Suma de	Grados de	Promedio de los			Valor crítico
variaciones	cuadrados	libertad	cuadrados	F	Probabilidad	para F
Entre grupos	3962684.444	2	1981342.222	108.7872	2.4E-17	3.219942
Dentro de los						
grupos	764946.6667	42	18213.01587			
Total	4727631.111	44				

Cuadro anexo nº 20: PESO DE LA 10MA SEMANA

	T0	T1	T2
1	5450	5800	6150
2	5450	5820	6150
3	5480	5820	6200
4	5480	5880	6220
5	5500	5900	6250
6	5500	5900	6300
7	5550	6000	6350
8	5580	6020	6350
9	5580	6050	6420
10	5600	6050	6450
11	5680	6100	6450
12	5680	6100	6500
13	5700	6120	6500
14	5720	6120	6650
15	5760	6200	6680
TOTAL	83710	89880	95620
PROM	5580.67	5992.00	6374.67

Cuadro anexo nº21: ANÁLISIS DE VARIANZA DE PESO DE LA 10MA SEMANA

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	15	83710	5580.666667	11020.95
Columna 2	15	89880	5992	16602.86
Columna 3	15	95620	6374.666667	27969.52

ANÁLISIS DE VARIANZA

Origen de las	Suma de	Grados de	Promedio de los			Valor crítico
variaciones	cuadrados	libertad	cuadrados	F	Probabilidad	para F
Entre grupos	4730324.444	2	2365162.222	127.632	1.4E-18	3.219942
Dentro de los						
grupos	778306.6667	42	18531.11111			
Total	5508631.111	44				

Cuadro anexo nº 30: INCREMENTO DE PESO

1	5390	5741	6090
2	5390	5760	6090
3	5420	5760	6140
4	5420	5819	6159
5	5438	5838	6189
6	5438	5838	6238
7	5485	5935	6288
8	5515	5955	6285
9	5515	5982	6352
10	5532	5982	6382
11	5610	6030	6380
12	5610	6030	6430
13	5625	6048	6425
14	5645	6045	6575
15	5685	6125	6605
TOTAL	82718	88888	94628
PROM	5514.53	5925.87	6308.53

Cuadro anexo nº31: ANÁLISIS DE VARIANZA DE INCREMENTO DE PESOS

RESUMEN

Grupos	Cuenta	Cuenta Suma		Varianza
Columna 1	15	82718	5514.533333	9878.12
Columna 2	15	88888	5925.866667	15267.6
Columna 3	15	94628	6308.533333	26151.8

ANÁLISIS DE VARIANZA

Origen de las	Suma de	Grados de	Promedio de los			Valor crítico
variaciones	cuadrados	libertad	cuadrados	F	Probabilidad	para F
Entre grupos	4730324.44	2	2365162.222	138.32	3.30303E-19	3.21994229
Dentro de los						
grupos	718165.2	42	17099.17143			
Total	5448489.64	44				

Cuadro anexo nº 32: CONSUMO DE ALIMENTO

SEMANA EXPERIMENTAL	T0	T1	T2
1ra	171	175	170
2da	290	285	280
3ra	470	470	460
4ta	650	620	610
5ta	760	740	720
6ta	980	970	950
7ma	1540	1480	1390
8va	1620	1590	1550
9na	1980	1960	1950
10ma	2160	2130	2080
TOTAL	10621	10420	10160
PROM	1180.11	1157.78	1128.89

Cuadro anexo nº33: ANÁLISIS DE VARIANZA DEL CONSUMO DE ALIMENTO

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	10	10621	1062.1	510686.3
Columna 2	10	10420	1042	493890
Columna 3	10	10160	1016	472537.8

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de los	10684.1	2	5342.03333	0.01085	0.989213	3.354130829
grupos	1.3E+07	27	492371.367			
Total	1.3E+07	29				

FOTOS

