

"UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO"

FACULTAD DE INGENIERÍA CIVIL, SISTEMAS Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"RESISTENCIA A LA COMPRESIÓN DE CONCRETOS CON EPÓXICOS ADHERENTES"

PARA OBTENER EL TITULO DE:

INGENIERO CIVIL

PRESENTADA POR:

BACH. ZEÑA SANDOVAL JOSE ANTONY

LAMBAYEQUE – PERU 2016

UNIVERSIDAD NACIONAL "PEDRO RUIZ GALLO"

FACULTAD DE INGENIERÍA CIVIL, SITEMAS Y ARQUITECTURA

M.SC.ING. FARIAS FEIJOO JUAN HERMAN PRESIDENTE-JURADO
MG.TC.ING. MODRAGON CASTAÑEDA CARLOS ERNESTO MIEMBRO-JURADO
M.SC.ING. SOSA SANDOVAL RICARDO ANTONIO MIEMBRO-JURADO
ING. BORJA SUAREZ MANUEL ALEJANDRO PATROCINADOR

DEDICATORIA

Quiero dedicarle la tesis a **Dios** que me ha dado la vida y la fortaleza para terminar este proyecto de investigación, por darme la oportunidad de vivir y por estar conmigo en cada paso que doy, por fortalecer mi corazón e iluminar mi mente y por haber puesto en mi camino a aquellas personas que han sido mi soporte y compañía durante todo el periodo de estudio.

A mi familia, con todo cariño y amor para mis padres José Tolino y Natalia; que hicieron todo en la vida para que yo pudiera lograr mis sueños, por motivarme y darme la mano cuando sentía que el camino se terminaba; todo esto ha influido en mis valores, mis principios, mi empeño, mi perseverancia y coraje para buscar metas y conseguir mis ideales, a ustedes por siempre mi corazón y agradecimiento.

A **mis hermanos** Silvia, Milagros, Aracely y Jahir; por estar presentes, acompañándome y apoyándome siempre.

A **mis abuelos**; por quererme y apoyarme siempre, aunque algunos de ustedes no estén presentes, siempre los recordaré.

A mis tíos, primos y amigos; por haber fomentado en mí el deseo de superación y el anhelo de triunfo en la vida, todos ustedes son personas importantes en mi vida, que siempre estuvieron listas para brindarme toda su ayuda.

[&]quot;El secreto de la sabiduría, el poder y el conocimiento es la humildad." Ernest Hemingway

AGRADECIMIENTO

Le agradezco a Dios por haberme acompañado y guiado a lo largo de mi carrera, por ser mi fortaleza en los momentos de debilidad y por brindarme una vida llena de aprendizajes, experiencias y sobre todo de felicidad.

Le doy gracias a mis padres por apoyarme en todo momento, por los valores que me han inculcado, y por haberme dado la oportunidad de tener una excelente educación en el transcurso de mi vida. Sobre todo por ser un excelente ejemplo de vida a seguir.

Agradezco a mis hermanos por ser parte importante de mi vida y apoyarme en aquellos momentos de necesidad, por ayudar a representar la unidad familiar. A todos ellos por llenar mi vida de grandes momentos que hemos compartido.

Mi más amplio agradecimiento para mi primer asesor, el ingeniero Carlos Jorge Ramos Chimpén, por su valiosa orientación y su visión crítica de muchos aspectos cotidianos de la vida, por su rectitud en su profesión como docente, por sus consejos, que ayudad a formarte como persona e investigador; quien por motivos de licencia no pudo continuar asesorándome. Agradezco el apoyo del ingeniero Manuel Alejandro Borja Suarez, ya que su asesoramiento fue determinante para la conclusión del mismo.

A la Universidad Nacional Pedro Ruiz Gallo y a mis maestros que me impartieron en las aulas todos sus conocimientos y darme las herramientas necesarias para el mundo laboral.

Asimismo, quisiera expresar mi agradecimiento a mis familiares y amigos quienes estuvieron vinculados de alguna manera a este proyecto.

A todos, mi mayor reconocimiento y gratitud.

RESUMEN

En nuestro país los vaciados masivos de concreto normalmente se realizan con procesos constructivos que presentan discontinuidades, obligando a contemplar juntas frías de concreto dentro de las estructuras. Los últimos eventos de sismos severos han evidenciado el mal funcionamiento de estructuras, por lo consiguiente es importante una correcta ejecución y localización de una junta de construcción dentro del elemento estructural, para no generar planos de fallas, donde las solicitaciones de esfuerzos sean mayores, conllevando a toda la estructura a fallar.

Muchas veces se ha utilizado adhesivos en tareas de reparaciones estructurales o para dar monolitismo a elementos estructurales de concreto, dentro de estos materiales se pueden reconocer los epóxicos adherentes, utilizados como puente de adherencia entre concretos y así generar una continuidad de transmisión de esfuerzos de corte y tracción.

En el ámbito nacional, poco se sabe del comportamiento de la adherencia entre concreto antiguo y concreto nuevo cuando de por medio existe un material ligante como es el epóxico adherente.

Es por ello que la investigación desarrollada en esta tesis está motivada por la necesidad de contribuir con el conocimiento del comportamiento de juntas de concreto materializadas haciendo uso de tres epóxicos adherentes. Se ha realizado un trabajo experimental enfocado a evaluar el efecto de unir concreto antiguo y concreto nuevo, cuya superficie de contacto entre concretos en una primera etapa se le dio un tratamiento distinto al de la segunda etapa, obteniéndose rugosidades distintas y además de aplicar epóxico adherente.

Para ello, en la primera etapa se elaboraron probetas monolíticas de tres tipos de concreto con resistencia 210, 245 y 280 kg/cm2, estas a 28 días de edad fueron seccionadas de forma oblicua, generando planos de corte con ángulos de 30, 37 y 45° respecto a la generatriz.

Luego se completó el cilindro con concreto de la misma resistencia, previamente la superficie de unión entre concreto antiguo y concreto nuevo se le dio tratamiento de rugosidad (picado de superficie), limpieza y aplicación del adhesivo.

Posteriormente, a edades de 7, 14 y 28 días se han realizado ensayos de resistencia de compresión a las probetas cilíndricas experimentales de 15 cm de diámetro y 30 cm de altura.

La efectividad de usar epóxicos adherentes en juntas frías en elementos de concreto se evaluó comparando la resistencia a compresión de probetas cilíndricas experimentales y de control. Obteniendo resistencias a la compresión de probetas unidas por adhesivos a edad de 28 días, de valores que variaron entre 36% y 66% de la alcanzada por el espécimen de control, donde los mayores valores se obtuvieron para probetas cuyas juntas frías se unieron por Sikadur 32 gel y Zeta Epox, con valores en promedio de 60% y 64% respectivamente. Por lo consiguiente se obtuvo mayor resistencia al corte para los adhesivos antes mencionados.

En esta primera etapa se obtuvo que el ángulo más óptimo para unir concreto antiguo y concreto nuevo es de 45°.

En la segunda etapa se elaboró probetas dejando la superficies de contacto rugosa con inclinación de 45°, simulando el proceso constructivo en obras y cuya resistencia a la compresión de diseño fue 210 kg/cm2; al igual que la primera etapa se completó el cilindro con concreto de la misma resistencia previamente haber limpiado la superficie de contacto y aplicado el epóxico adherente.

Se realizó ensayo de compresión comparándose los resultados con probetas patrón, que al igual que las anteriores se unieron sin utilizar adhesivos, y así determinar el porcentaje de mejora en la transmisión de esfuerzos, por lo consiguiente una óptima unión entre concreto.

Adicionalmente se realizaron ensayos de flexión de vigas simples.

INDICE

CA	PITU	JLO I	PLANTEAMIENTO DEL ESTUDIO	19
1	.1	DESC	CRIPCIÓN DE LA REALIDAD PROBLEMÁTICA	20
1	.2	DESC	CRIPCIÓN DEL PROYECTO	20
1	.3	FOR	MULACIÓN DE LA PREGUNTA DE INVESTIGACIÓN	21
1	.4	HIPO	TESIS	21
1	.5	OBJE	ETIVOS	21
	1.5.	1 (DBJETIVO GENERAL	21
	1.5.	2 (DBJETIVOS ESPECIFICOS	21
1	.6	JUST	TFICACIÓN E IMPORTANCIA	22
	1.6.	1 J	IUSTIFICACIÓN	22
	1.6.	2 II	MPORTANCIA	22
1	.7	LIMIT	ACIONES DEL ESTUDIO	22
CA	PITU	JLO II	MARCO TEORICO	23
2	.1	INTR	ODUCCIÓN	24
2	.2	ANTE	ECEDENTES DE OTRAS INVESTIGACIONES	24
2	.3	ANTE	ECEDENTES DE ENSAYOS	26
2	.4	BASE	ES TEORICAS	30
	2.4.	1 E	EL CONCRETO	30
	2.4.	2 F	PASTA DE CEMENTO	31
	2.4.	2.1	CONCEPTO	31
	2.4.	2.2	ENLACE CEMENTO – AGREGADO	31
	2.4.	3 (COMPONENTES DEL CONCRETO	32
	2.4.	3.1	CEMENTO	32
	2.4.	3.1.1	TIPOS DE CEMENTO PORTLAND	33
	2.4.	3.2	LOS AGREGADOS PARA EL CONCRETO	34
	2.4.	3.2.1	CLASIFICACION DE LOS AGREGADOS	35
	2.4.	3.2.1.1	I AGREGADO FINO	35
	2.4.	3.2.1.2	2 AGREGADO GRUESO	35
	2.4.	3.3	AGUA PARA CONCRETO	36
	2.4.	4 F	PRINCIPALES PROPIEDADES DEL CONCRETO	. 37

2.	.4.5 ADHESIVO	38
2.	.4.5.1 CLASIFICACIÓN DE LOS ADHESIVOS	39
2.	.4.5.1.1 ADHESIVOS REACTIVOS	40
2.	.4.5.1.1.1 ADHESIVOS REACTIVOS RÍGIDOS	42
2.	.4.5.1.1.1 EPOXIS	42
CAPI	TULO III METODOLOGIA	45
3.1	DISEÑO METODOLOGICO	46
3.1.	1 TIPO DE INVESTIGACIÓN	46
3.2	OPERACIÓN DE VARIABLES	46
3.2.	1 VARIABLES INDEPENDIENTES	46
3.2.	2 VARIABLE DEPENDIENTE	46
3.3	ENSAYOS	46
3.3.	1 RESISTENCIA A LA COMPRESIÓN	46
3.3.	2 ENSAYO DE CIZALLAMIENTO OBLICUO (SLANT SHEAR TEST)	48
3.3.	3 ENSAYO DE RECONSTRUCCION DEL CILINDRO	51
3.3.	4 ENSAYO DE RESISTENCIA A FLEXIÓN	52
3.4	TRATAMIENTOS UTILIZADOS	53
3.4.	1 PUENTE DE ADHERENCIA	53
3.4.	2 PICADO (50% DE LA SUPERFICIE)	54
3.4.	3 RUGOSIDAD INTENCIONAL	54
CAPI	TULO IV DESARROLLO DEL PROGRAMA EXPERIMENTAL	55
4.1	INTRODUCCIÓN	5e
4.2	MAQUINARIA Y EQUIPOS	5e
4.2.	1 CORTADORA DE CONCRETO DE 14"	5e
4.2.	2 MEZCLADORA	57
4.2.	3 MOLDES CILÍNDRICOS	57
4.2.	4 MOLDES RECTANGULARES	58
4.2.	5 MAQUINA DE ENSAYO	58
4.3	CARACTERISTICA DE LOS MATERIALES	59
4.3.	1 CEMENTO	59
4.3.	2 AGREGADO FINO	60
4.3.	.3 AGREGADO GRUESO	61

4.3.4 E	POXICOS ADHERENTES	62
4.3.4.1	SIKADUR 32 GEL	62
4.3.4.2	CHEMA EPOX ADHESIVO 32	63
4.3.4.3	ZETA POX O UNIVERSAL	65
4.4 DO	SIFICACIÓN DEL CONCRETO	66
4.5 EL	ABORACIÓN DE LAS SERIES DE ENSAYOS	67
	ELABORACIÓN DE LOS CILINDROS SEGÚN MÉTODO DE TITUCCIÓN	69
4.5.1.1	ELABORACIÓN DE PROBETAS PRIMERA ETAPA	69
4.5.1.2	TRATAMIENDO DE SUPERFICIE DE CONTACTO	71
4.5.1.2.1	PICADO	71
4.5.1.2.2	EPÓXICO ADHERENTE	72
4.5.1.3	ELABORACIÓN DE PROBETA SEGUNDA ETAPA	72
4.5.2 E	ELABORACIÓN DE PROBETAS CILINDRICAS MONOLÍTICAS	73
4.5.3 E	ELABORACIÓN DE VIGAS	74
4.5.3.1	ELABORACIÓN DE VIGAS PRIMERA ETAPA	74
4.5.3.2	TRATAMIENDO DE SUPERFICIE DE CONTACTO	75
4.5.3.2.1	PICADO	75
4.5.3.2.2	EPÓXICO ADHERENTE	76
4.5.3.3	ELABORACIÓN DE VIGA SEGUNDA ETAPA	76
_	ELABORACIÓN DE PROBETAS CILÍNDRICAS SIMULANDO PROCESO UCTIVO EN OBRA	77
4.5.4.1	ELABORACIÓN DE PROBETAS PRIMERA ETAPA	77
4.5.4.2	TRATAMIENTO DE SUPERFICIE DE CONTACTO	77
4.5.4.2.1	ESCOBILLADO	77
4.5.4.2.2	EPÓXICO ADHERENTE	78
4.5.4.2.3	SIN EPÓXICO ADHERENTE	79
4.5.4.3	ELABORACIÓN DE PROBETAS SEGUNDA ETAPA	79
4.5.4.4	CURADO DE PROBETAS CILÍNDRICAS Y VIGAS	80
4.5.5 E	ENSAYO DE LAS PROBETAS CILÍNDRICAS	80
4.5.5.1	ENSAYO DE COMPRESIÓN DE PROBETAS SECCIONADAS	81
4.5.5.2 PROCES	ENSAYO DE COMPRESIÓN DE PROBETAS CON SIMULACIÓN DE O EN OBRA	82

	4.5.5.3	ENSAYO DE FLEXIÓN	. 83
С	APITULO	V RESULTADOS	84
	5.1 INT	RODUCCIÓN	. 85
		SAYO DE COMPRESIÓN A PROBETAS APLICANDO MÉTODO DE FITUCIÓN	. 85
	5.2.1 E	NSAYO DE COMPRESIÓN GRUPO EXPERIMENTAL	. 85
	5.2.1.1 CONCRET	RESISTENCIA A LA COMPRESIÓN A LOS 7 DIAS DE EDAD DEL TO NUEVO.	. 85
	5.2.1.2 CONCRET	RESISTENCIA A LA COMPRESIÓN A LOS 14 DIAS DE EDAD DEL TO NUEVO.	. 90
	5.2.1.3 CONCRET	RESISTENCIA A LA COMPRESIÓN A LOS 28 DIAS DE EDAD DEL TO NUEVO.	. 94
	5.2.2 E	NSAYO DE COMPRESIÓN GRUPO DE CONTROL	. 98
	5.2.3 E	NSAYO DE FLEXIÓN GRUPO EXPERIMENTAL	. 99
		SAYO DE COMPRESIÓN A PROBETAS SIMULANDO PROCESO JCTIVO EN OBRA	100
С	APITULO	VI ANALISIS DE RESULTADOS 1	03
	6.1 INT	RODUCCIÓN	104
		ÁLISIS DE RESISTENCIA A LA COMPRESIÓN SEGÚN METODO DE	105
	6.2.1 A	NÁLISIS DE RESISTENCIA A LA COMPRESIÓN PARA SIKADUR 32 GEL :	105
		NÁLISIS DE RESISTENCIA A LA COMPRESIÓN PARA CHEMA EPOX O 32.	108
		NÁLISIS DE RESISTENCIA A LA COMPRESIÓN PARA ZETA POX O	111
		ÁLISIS DE LA TENSIÓN DE CORTE SEGÚN MÉTODO DE FITUCIÓN	114
		NÁLISIS DE LA TENSIÓN DE CORTE ÚLTIMA EN EL PLANO DE LA JUNT (ADUR 32 GEL	
		NALISIS DE LA TENSION DE CORTE ÚLTIMA EN EL PLANO DE LA JUNT EMA EPOX ADHESIVO 32	
		NÁLISIS DE LA TENSIÓN DE CORTE ÚLTIMA EN EL PLANO DE LA JUNT TA POX O UNIVERSAL	
		CTOR DE RELACIÓN DE RESISTENCIA SEGÚN MÉTODO DE	118

		FACTOR DE RELACIÓN DE RESISTENCIA A LA COMPRESIÓN PARA DUR 32 GEL	118
		FACTOR DE RELACIÓN DE RESISTENCIA A LA COMPRESIÓN PARA A EPOX ADHESIVO 32.	120
		FACTOR DE RELACIÓN DE RESISTENCIA A LA COMPRESIÓN PARA POX O UNIVERSAL.	121
		FACTOR DE RELACIÓN DE RESISTENCIA A FLEXIÓN DE VIGAS SIMPLES AS POR EPOXICO ADHERENTE.	123
		FACTOR DE RELACIÓN DE RESISTENCIA A COMPRESIÓN SIMULANDO ESO DE CONSTRUCCIÓN EN OBRA	123
CA	PITU	ILO VII CONCLUSIONES Y RECOMENDACIONES	124
7	'.1	CONCLUCIONES	125
7	'.2	RECOMENDACIONES	126
7	' .3	LINEAS FUTURAS DE INVESTIGACIÓN	126
CA	PITU	ILO VIII BIBLIOGRAFIA	128
7	'.1	REFERENCIAS BIBLIOGRAFICAS	129
ΑN	IEXO	S	131
		A RESULTADOS DE ENSAYOS DE LABORATORIO DE MATERIALES	
		B DESCRIPCION FOTOGRAFICA	

INDICE DE FIGURAS

CAPITULO II

Figura 2. 1. Ensayos de tracción, tracción por hendimiento y corte	27
Figura 2. 2. Slant Shear test	28
Figura 2. 3. Relación entre el coeficiente del esfuerzo de compresión y la fuerza de corte)
puro, y el ángulo de la interfaz entre concretos	
Figura 2. 4. Posicionamiento de los adhesivos	38
Figura 2. 5. Esquema básico de unión adhesiva	
CAPITULO III	
Figura 3. 1. Ensayo de Resistencia a la Compresión	48
Figura 3. 2. Ensayo de Cizallamiento Oblicuo	49
Figura 3. 3. Circulo de Mohr	51
Figura 3. 4. Probeta para ensayo de comprobación	51
Figura 3. 5. Ensayo de Resistencia a Flexión	53
CAPITULO IV	
Figura 4. 1. Cortadora de Concreto de 14"	56
Figura 4. 2. Mezcladora	57
Figura 4. 3. Moldes Cilíndricos	57
Figura 4. 4. Moldes Rectangulares	58
Figura 4. 5. Máquina de ensayo	58
Figura 4. 6. Cemento tipo Extraforte Ico	59
Figura 4. 7. Sikadur – 32 Gel	63
Figura 4. 8. Chema Epox adhesivo 32	65
Figura 4. 9. Zeta Epox o Universal	66
Figura 4. 10. Corte de Probetas a edad de 28 días	70
Figura 4. 11. Probetas con plano de corte 30°, 37° y 45°	70
Figura 4. 12. Picado de 50% de superficie de contacto	71
Figura 4. 13. Superficie de contacto luego de aplicar el Adhesivo	72
Figura 4. 14. Moldes una vez colocado el concreto de la segunda etapa	73
Figura 4. 15. Especímenes de control de concreto monolítico	73
Figura 4. 16. Llenado de concreto en vigas primera etapa	75
Figura 4. 17. Superficie de contacto luego de aplicar el Adhesivo	76
Figura 4. 18. Elaboración de probetas primera etapa simulando proceso constructivo	77

Figura 4. 22. Falla por corte o deslizamiento
Figura 4. 23. Falla por compresión81
Figura 4. 24. Falla por compresión, evidencia de transmisión de esfuerzos
Figura 4. 25. Falla por compresión sin deslizamiento entre concretos
Figura 4. 26. Ensayo de resistencia a flexión con carga en el centro
Figura 4. 27. Falla por compresión, se evidencia transmisión de esfuerzos
CAPITULO V
Figura 5. 1. Falla por corte a 7 días de edad del concreto nuevo, plano inclinado 45° respecto a la generatriz
Figura 5. 2. Falla por compresión a 7 días del concreto nuevo, plano inclinado 45° con
respecto a la generatriz
Figura 5. 3. Falla por corte a 14 días de edad del concreto nuevo, plano inclinado 30° con respecto a la generatriz
Figura 5. 4. Falla por corte a 14 días de edad del concreto nuevo, plano inclinado 37° con
respecto a la generatriz
Figura 5. 5. Falla por corte a 28 días de edad del concreto nuevo, plano inclinado 30° con respecto a la generatriz
Figura 5. 6. Falla por corte a 28 días de edad del concreto nuevo, plano inclinado 45° con
respecto a la generatriz
Figura 5. 7. Falla por compresión de cilindro monolítico
Figura 5. 8. Ensayo de flexión a vigas de concreto simple, con carga en el centro de la luz.
CAPITULO VI
Figura 6. 1. Gráfico comparativo de resistencia a la compresión vs. Edad de concreto nuevo, entre cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 210 kg/cm2 105 Figura 6. 2. Gráfico comparativo de resistencia a la compresión vs. Edad de concreto nuevo, entre cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 245 kg/cm2 106 Figura 6. 3. Gráfico comparativo de resistencia a la compresión vs. Edad de concreto nuevo, entre cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 280 kg/cm2 107 Figura 6. 4. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Chema Epox Adhesivo 32 para f'c = 210 kg/cm2

Figura 6. 5. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Chema Epox Adhesivo 32 para f'c = 245 kg/cm2
Figura 6. 6. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Chema Epox Adhesivo 32 para f'c = 280 kg/cm2
Figura 6. 7. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 210 kg/cm2.
Figura 6. 8. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 245 kg/cm2.
Figura 6. 9. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 280 kg/cm2.

INDICE DE TABLAS

CAPITULO II

Tabla 2. 1.Definiciones para el concreto.	. 30
CAPITULO IV	
Tabla 4. 1. Granulometría del Agregado Fino.	60
Tabla 4. 2. Características del agregado Fino	. 60
Tabla 4. 3. Granulometría del Agregado Grueso.	61
Tabla 4. 4. Característica del Agregado grueso	61
Tabla 4. 5. Propiedades de Sikadur 32 Gel	63
Tabla 4. 6. Propiedades de Chema Epox Adhesivo 32	64
Tabla 4. 7. Propiedades de Zeta Pox o Universal	
Tabla 4. 8. Dosificación de Concreto f'c= 210 kg/cm2	67
Tabla 4. 9. Dosificación de Concreto f'c= 245 kg/cm2	67
Tabla 4. 10. Dosificación de Concreto f'c= 280 kg/cm2	67
Tabla 5. 1. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por	0.0
Sikadur 32 Gel a edad de 7 días del concreto nuevo	
Tabla 5. 3. Resistencia a la compresión de concreto antiguo y concreto nuevo unidos por Zeta Pox o Universal a edad de 7 días del concreto nuevo	
Tabla 5. 4. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Sikadur 32 Gel a edad de 14 días del concreto nuevo	90
Tabla 5. 5. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Chema Epox Adhesivo 32 a edad de 14 días de concreto nuevo	91
Tabla 5. 6. Resistencia a la compresión de concreto antiguo y concreto nuevo unidos por Zeta Pox o Universal a edad de 14 días del concreto nuevo	92
Tabla 5. 7. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Sikadur 32 Gel a edad de 28 días del concreto nuevo	94
Tabla 5. 8. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Chema Epox Adhesivo 32 a edad de 28 días de concreto nuevo	95
Tabla 5. 9. Resistencia a la compresión de concreto antiguo y concreto nuevo unidos por Zeta Pox o Universal a edad de 28 días del concreto nuevo	96

Tabla 5. 10. Resistencia a la compresión de cilindros de concreto fabricados monolíticamente
a los 7, 14 y 28 días de edad
Tabla 5. 11. Resistencia a flexión de vigas de concreto antiguo y concreto nuevo unidas por
epóxicos adherentes
Tabla 5. 12. Resistencia a la compresión de diseño f'c = 210 kg/cm2 y ángulo de superficie
de contacto 45°
CAPITULO VI
Tabla 6. 1. Tensión de corte ultima con aplicación de Sikadur 32 gel a edad de 7 días del
concreto nuevo
Tabla 6. 2. Tensión de corte ultima con aplicación de Sikadur 32 gel a edad de 14 días del
concreto nuevo
Tabla 6. 3. Tensión de corte ultima con aplicación de Sikadur 32 gel a edad de 28 días del
concreto nuevo.
Tabla 6. 4. Tensión de corte ultima con aplicación de Chema Epox Adhesivo 32 a edad de 7
días del concreto nuevo.
Tabla 6. 5. Tensión de corte ultima con aplicación de Chema Epox Adhesivo 32 a edad de 14
días del concreto nuevo
Tabla 6. 6. Tensión de corte ultima con aplicación de Chema Epox Adhesivo 32 a edad de 28
días del concreto nuevo
Tabla 6. 7. Tensión de corte última con aplicación de Zeta Pox o Universal a edad de 7 días del concreto nuevo
Tabla 6. 8. Tensión de corte última con aplicación de Zeta Pox o Universal a edad de 14 días
del concreto nuevo
Tabla 6. 9. Tensión de corte última con aplicación de Zeta Pox o Universal a edad de 28 días
del concreto nuevo
Tabla 6. 10. Comparación de resistencia la compresión encontrando factor de relación entre
cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 210 kg/cm2118
Tabla 6. 11. Comparación de resistencia la compresión encontrando factor de relación entre
cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 245 kg/cm2 119
Tabla 6. 12. Comparación de resistencia la compresión encontrando factor de relación entre
cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 280 kg/cm2119
Tabla 6. 13. Comparación de resistencia la compresión encontrando factor de relación entre
cilindros de control y cilindros unidos por Chema Epox Adhesivo 32 para f'c = 210 kg/cm 2 . 120
Tabla 6. 14. Comparación de resistencia la compresión encontrando factor de relación entre
cilindros de control y cilindros unidos por Chema Epox Adhesivo 32 para f'c = 245 kg/cm 2 . 120
Tabla 6. 15. Comparación de resistencia la compresión encontrando factor de relación entre
cilindros de control y cilindros unidos por Chema Epox Adhesivo32 para f'c = 280 kg/cm2. 121

Tabla 6. 16. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 210 kg/cm2. 121

Tabla 6. 17. Comparación de resistencia la compresión encontrando factor de relación entre
cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 245 kg/cm2 122
Tabla 6. 18. Comparación de resistencia la compresión encontrando factor de relación entre
cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 280 kg/cm2 122
Tabla 6. 19. Comparación de resistencia a flexión encontrando factor de relación entre vigas
de control y vigas unidas por epóxico adherente para f'c = 210 kg/cm2123
Tabla 6. 20. Comparación de resistencia a compresión encontrando factor de relación entre
probetas de control y probetas experimentales para f'c = 210 kg/cm2123

INTRODUCCION

En condiciones ideales, toda estructura de concreto armado debiese ser monolítica. Sin embargo, generalmente por la envergadura de éstas y la imposibilidad de colocar los grandes volúmenes de concreto que son necesarios para su construcción sin interrupciones es normal la aparición de juntas. Lo anterior implica que estas juntas deben ser capaces de transferir los esfuerzos de corte y tracción a través de la interfaz entre los concretos que conforman el elemento estructural en dos etapas. Como mínimo, las juntas deben permitir el desarrollo de resistencias de corte y tracción que superen los niveles de solicitaciones a las que se verá sometido e idealmente su resistencia debiese corresponder a la del concreto circundante.

Ejecutar una buena junta es responsabilidad tanto del constructor como de quien diseña la estructura. El constructor debe tomar todas las precauciones para mantener la continuidad de las faenas de concreto y realizar los tratamientos (ya sean mecánicos o químicos) indicados por el calculista al momento de introducir una junta de construcción. Éste, por su parte, debe disponer la ubicación de las juntas en zonas donde las solicitaciones de corte sean bajas.

Las juntas preparadas de manera deficiente, pueden originar planos débiles dentro de la estructura donde no se asegura la resistencia estructural ni la impermeabilidad al traspaso del agua, con el consiguiente deterioro del elemento estructural. Por lo general, se consideran como juntas defectuosas aquellas donde existe presencia de lechada superficial en el concreto fraguado, presencia de partículas inertes de polvo en la superficie de unión, segregación del concreto de la segunda etapa y cuando hay una dosificación o compactación inadecuada.

En el presente trabajo de título se analizará la eficacia en cuanto a la resistencia a la compresión de las juntas frías al aplicar distintos tratamientos en la superficie de contacto. Particularmente se evaluará la materialización de las juntas frías al utilizar epóxico como adhesivo contenedor del concreto antiguo y nuevo en el plano de interrupción del concreto.

CAPITULO I PLANTEAMIENTO DEL ESTUDIO

1.1 DESCRIPCIÓN DE LA REALIDAD PROBLEMÁTICA

En la republica de Perú, específicamente en el área de la construcción, a menudo pueden encontrarse obras en las cuales se necesita que exista una adecuada adherencia entre un concreto antiguo y un concreto nuevo haciendo uso de epóxicos adherentes, ya sea para dar continuidad monolítica a estructuras que según proceso constructivo no se puede hacer de forma constante o porque existe la necesidad de remodelar, reparar y reforzar estructuras dañadas por solicitaciones sísmicas, por envejecimiento, por cambio de uso de edificación o deterioros de la estructura.

En el mercado peruano se están usando tres tipos de epóxicos para adherir concreto antiguo con concreto nuevo sin tener la seguridad que cumplen con las propiedades mecánicas de la unión misma entre concretos, existiendo gran incertidumbre de que los concretos alcanzan la resistencia a la compresión especificada.

1.2 DESCRIPCIÓN DEL PROYECTO

El presente proyecto está basado en realizar pruebas de laboratorio, para determinar la resistencia a la compresión de probetas cilíndricas de concreto unidos por tres tipos de epóxico adherente, siendo estos los más usados en el sector de la construcción de Perú.

El proyecto consistió en la elaboración y ensayo de probetas cilíndricas de 15 cm de diámetro y 30 cm de altura, en una primera etapa las probetas fueron seccionadas haciendo uso de una cortadora de concreto, quedando estas en dos mitades a través de una superficie que forma ángulos de 30°, 37° y 45° con la generatriz del cilindro.

Después de cortada la probeta, haber sido picada y limpiada la superficie de contacto, la probeta es nuevamente rellenada, previamente la aplicación de epóxico; pudiéndose así evaluar el comportamiento dela unión concreto endurecido con concreto fresco y obtener el ángulo más favorable, para la materialización de una junta.

Determinado el ángulo más óptimo para la materialización de la junta, en una segunda etapa se simulo el proceso constructivo en obra, elaborándose la mitad de una probeta con superficie de contacto intencionalmente rugosa y con la inclinación determinada en la primera etapa.

El comportamiento es fácilmente calculado a partir de verificación de la capacidad del adhesivo en reconstituir, en toda su plenitud, las características de la probeta original confeccionada con concreto íntegro. En esta evaluación es interesante medir la resistencia a la compresión y observar o fotografiar la forma de rotura de la probeta en el sentido de evaluar la capacidad de reconstitución de la formulación ensayada.

1.3 FORMULACIÓN DE LA PREGUNTA DE INVESTIGACIÓN

¿La utilización de epóxicos adherentes para unir concreto antiguo y concreto nuevo permite alcanzar la totalidad de la resistencia a la compresión de diseño?

1.4 HIPOTESIS

La unión de concreto antiguo y concreto nuevo haciendo uso de epóxico adherente permite reconstituir, en toda su plenitud, las características de resistencia a la compresión de diseño.

1.5 OBJETIVOS

1.5.1 OBJETIVO GENERAL

Determinar la resistencia a la compresión de concretos de diferentes edades unidos con epóxicos adherentes.

1.5.2 OBJETIVOS ESPECIFICOS

- a) Determinación de la resistencia a la compresión de las probetas de concreto al utilizar epóxicos adherentes.
- b) Comparar la eficiencia de los adhesivos al materializar la unión entre concreto antiguo y concreto nuevo.
- c) Determinar ángulo de corte o plano de unión más favorable que materialice la unión más resistente al someterse la probeta a compresión.

d) Analizar por medio de gráficos el comportamiento de adhesión entre concreto antiguo y concreto nuevo.

1.6 JUSTIFICACIÓN E IMPORTANCIA

1.6.1 JUSTIFICACIÓN

No se han realizado ensayos de laboratorio determinando que adhesivo utilizados en el mercado peruano produce una adecuada adherencia entre concreto antiguo y concreto nuevo verificando su resistencia a la compresión, por lo tanto se justifica dicho proyecto a fin de prevenir futuros problemas estructurales.

1.6.2 IMPORTANCIA

Proporcionar al ingeniero civil ensayos de verificación de resistencia a compresión de concretos con epóxicos adherentes comercializados en Perú, y que ayude a elegir el adhesivo más adecuado a usar en reparaciones de concreto o para tener continuidad monolítica en las estructuras.

La importancia que tiene dicha investigación es significativa para los calculistas estructurales los cuales tendrán presente los efectos de las interrupciones en el concreto, como también para los ingenieros de campo los cuales deben supervisar la buena ejecución de estas y ser conscientes del efecto que conlleva paralizar una faena de concreto y continuar con él sin tomar en cuenta el efecto de la interrupción del concreto en la estructura y por ende en su resistencia.

1.7 LIMITACIONES DEL ESTUDIO

Se obtendrá el valor de resistencia a la compresión de probetas cilíndricas, conformadas por concreto antiguo y concreto nuevo unidas por adhesivo Sikadur 32 Gel, Chema Epox adhesivo 32 y Zeta Pox o Universal.

CAPITULO II MARCO TEORICO

2.1 INTRODUCCIÓN

En el presente capitulo se efectúa un análisis conciso sobre el concreto y adhesivos, así como sus componentes y características.

2.2 ANTECEDENTES DE OTRAS INVESTIGACIONES

Ya en 1964 Atilano Lamana analizó las fallas producidas en juntas de concreto, anclajes y empalmes en los terremotos de chile de 1958 y 1960 que afectaron a distintas estructuras tales como muros de gran altura, muros de edificios y pilares en donde se ve claramente que las fallas se producen en las juntas de concreto. El trabajo evidencia que las uniones concreto – concreto tienen resistencias menores que las distintas piezas de concreto que conforman una estructura.

En este estudio se hace hincapié en la necesidad de poner especial cuidado y vigilancia en la ejecución de la junta y que, a menos que se empleen procedimientos especiales en ejecución de las juntas, no debe confiarse en su resistencia y por lo tanto hay que contar con la existencia de planos débiles para los efectos de cálculo. Finalmente, habla de las notables fallas producidas en las juntas de concreto de muros de gran altura tales como silos y tanques elevados, donde la ejecución de la junta debe ser muy cuidadosa.

Foncea y Levy bajo la dirección y guía del profesor Lamana, ensayaron a cizalle juntas de concreto preparadas con distintos tratamientos donde se introduce por primera vez la aplicación de resinas epóxicas en las juntas de concreto. Resinas que no alcanzaban las resistencias de las producidas hoy en día.

En el estudio se utilizó tratamientos de chorro de arena, resina epóxica, escobillado, ataque con ácido y picado de la superficie. De estos, el mejor resulto ser el chorro de arena donde se alcanzó un 87% de la resistencia del concreto monolítico. Tras este tratamiento la resina, el escobillado y el ataque con ácido alcanzaron un 78%, 50% y 48% de la resistencia alcanzada para el caso monolítico respectivamente. Además, se detalla que el humedecimiento de la superficie de la junta antes de colocar el nuevo concreto y la presencia de lechada superficial se presentan como factores perjudiciales para la buena adherencia de la junta de concreto.

Fernández Cánovas realizó un estudio experimental donde se ensayó a flexotracción prismas de 10 x 15 x 120 (cm) con una junta de concreto donde se aplicó resina epóxica con tratamiento de superficie. Lo que se investigó en el trabajo fue la influencia de la dosificación del concreto, edad del concreto base y el tratamiento de superficie al que se somete el concreto base en la resistencia alcanzada por la junta de concreto.

De los resultados obtenidos en este estudio se desprende que la dosificación del concreto no tuvo influencia alguna sobre el comportamiento de junta, obteniendo altas resistencias, independiente de la relación cemento agregado elegida. La rotura de las vigas se produjo, por lo general, fuera de la junta, y siempre por el concreto de menor edad. La edad del concreto viejo no fue factor para la calidad de la junta donde obtuvo resistencias similares para concretos unidos a las 24 hrs, 7, 28 y 120 días.

El mejor de los tratamientos utilizados resultó ser el picado de la superficie de contacto seguido por el escobillado de la misma. El tratamiento y limpiado de la superficie resultó ser clave para la adherencia de la junta cuando se utilizó resinas epóxicas.

Antonio Perez estudió las resistencias de juntas de concreto variando el tratamiento de la superficie y la edad del concreto base al momento de materializar la junta. Como tratamiento Perez utilizó el escobillado de la superficie más la aplicación de distintos adhesivos. El tiempo que transcurrió entre la colocación del concreto base y el de la segunda etapa fue de 6 horas, 1 día y 7 días.

Para esto, se construyó probetas cúbicas de 15 x 15 x 15 (cm), confeccionadas en 2 mitades de 15 x 15 x 7.5 (cm) cada una que fueron ensayadas por hendimiento para determinar su carga última. De los ensayos realizados se desprende que para las juntas de concreto donde el tratamiento fue mecánico (no incluye el uso de adhesivos) la edad del tratamiento base si tiene influencia sobre la resistencia de la probeta, obteniéndose menores resistencias a mayores edades del concreto base.

En cambio, para los tratamientos donde se incluyó resina epóxica fue necesario que el hormigón tuviese suficiente resistencia para mejorar la calidad de la junta.

En cuanto a los tratamientos de la superficie aplicados, el mejor resulto ser el chorro de arena por sobre el escobillado con 86% de la resistencia del concreto monolítico. De los adhesivos utilizados el mejor resultó ser el puente de adherencia AS 233-10 de Químicas A. Stierling con un 96% de la resistencia de la probeta monolítica. Finalmente Perez recomienda la utilización de chorro de arena junto con la colocación de una película de resina epóxica para lograr una mejor adhesión en la junta de concreto.

Neshvadian quien estudió la resistencia de la unión entre concreto viejo y el nuevo utilizado en la reparación de grietas establece que los principales factores que afectan en la resistencia de esta unión son la limpieza de la superficie de contacto, la presencia de lechada superficial, la colocación y compactación de la segunda capa de concreto y el curado del concreto con que se materializa la junta. Además, indica como factores secundarios de la resistencia de la junta de concreto las propiedades del concreto de la segunda etapa, la edad del concreto base al momento de materializar la junta y el humedecimiento previo de la superficie de contacto.

2.3 ANTECEDENTES DE ENSAYOS

Numerosos trabajos se han realizado para estudiar la unión entre concretos utilizando distintos métodos. La mayoría de los métodos tienen como principio la tracción directa, tracción indirecta o el esfuerzo de corte en especímenes donde se unen dos cuerpos mediante la aplicación de algún tipo de adhesivo.

En la figura 2.1 a) se somete a la probeta a una tensión perpendicular al plano de la junta. Este método de ensayo no ha recibido gran aceptación debido a la imposibilidad de fijar ambos extremos de la probeta sin generar excentricidad. El ensayo de hendimiento mostrado en la figura 2.1 b) donde la carga se aplica paralela al plano de la junta a pesar de ser simple de practicar que el de tensión directa no es muy usado para las juntas de concreto antiguo y concreto nuevo. Ambos métodos se basan en la tracción del concreto como el criterio de falla. El ensayo del esfuerzo de

corte se muestra en la figura 2.1 c) donde se tiene dos secciones iguales que se unen utilizando algún método para asegurar la adherencia. A ambos lados de la sección actúa un corte diagonal formando un ángulo de 30° con respecto a la vertical y una tensión de compresión. La resistencia de la unión se obtiene de la división de la caga última de compresión por el área de la unión de los concretos.

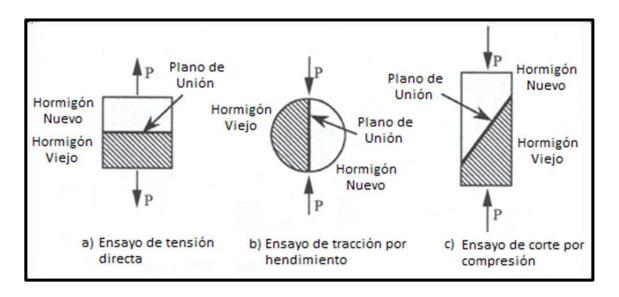


Figura 2. 1. Ensayos de tracción, tracción por hendimiento y corte.

El ensayo de cizalle diagonal es uno de los métodos más comunes para determinar la resistencia de una junta. En este ensayo la junta de concreto se somete a una combinación de esfuerzos de compresión y corte los que son producto de la carga de compresión a la que se somete a la probeta. Este ensayo fue presentado primero con el nombre de "Arizona Slant shear Test" (Kreigh, 1976) y después de cierto desarrollo fue estandarizado en la British Standard, BS 6319. El ASTM C882-99 también incorporó el método para evaluar la resistencia de las uniones con epóxicos y en ella cómo se debe realizar este ensayo.

Wall y Shrive modificaron el método usando un prisma con un largo de tres veces la sección transversal en vez del cilindro que se indica en la ASTM. Como en la mayor parte de los casos los esfuerzos reales a los que se ve sometida la estructura tiene una componente de corte, este método de ensayo representa de forma más real lo que sucede en la realidad.

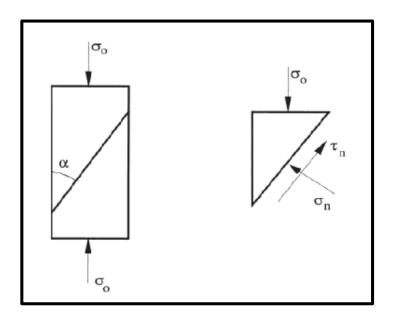


Figura 2. 2. Slant Shear test.

Austin y Robins demostraron que existen ciertas deficiencias con este tipo de ensayo. Primero que la falla depende fundamentalmente del ángulo en que esté la interface. Generalmente se usa un ángulo de 30° según los estándares del ensayo, que de aumentar su valor incrementará la tensión de compresión ya que la influencia de la componente de compresión aumenta en el plano de la unión. Segundo, el ensayo es relativamente insensible a la preparación y rugosidad de la superficie. Austin y Robins muestran que al cambiar la superficie de lisa a rugosa tuvo una gran influencia en los resultados, pero al cambiar la rugosidad por distintos métodos no vario los resultados de forma notoria. Sus resultados muestran que la resistencia de la junta crece al doble después de cambiar la superficie de lisa a rugosa, pero al cambiar la rugosidad de relativamente rugosa a altamente rugosa no cambió de gran forma los resultados. Más aún, sus estudios demuestran que el incremento de la rugosidad de la superficie de contacto puede cambiar la forma de falla de la probeta.

Al existir una componente de compresión en la interfaz entre los concretos gana más fricción y una trabazón producida por la rugosidad de la superficie. Por esto la influencia de la fuerza de compresión en la junta es mayor que la influencia de la preparación de la superficie al menos que la superficie este lisa. Así el "Slant Shear test" produce una componente de compresión y genera una mayor unión en la

interfaz, de esta forma aunque las partes no estuviesen unidas, el ensayo mostraría cierta resistencia de la junta.

Austin y Robins representan la relación entre el ángulo y el coeficiente del esfuerzo de compresión σ y la fuerza de corte puro (Figura2.3). El gráfico muestra que el ángulo de 30° recomendado por la ASTM C882 está cerca del valor mínimo de carga necesaria para lograr la falla para las superficies lisas. Pero, mientras más rugosa es la superficie, se hace necesario aplicar mayor carga para lograr la falla para el mismo ángulo. A mayor rugosidad de superficie mayor carga será necesaria para lograr la falla de la superficie.

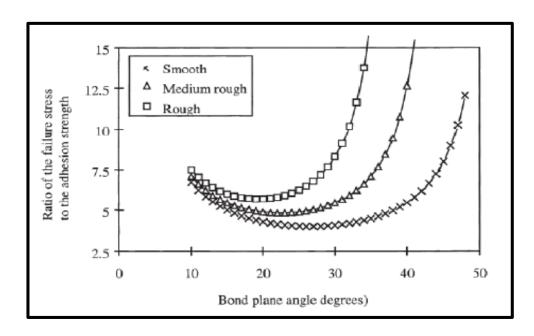


Figura 2. 3. Relación entre el coeficiente del esfuerzo de compresión y la fuerza de corte puro, y el ángulo de la interfaz entre concretos.

El ASTM C882-99 describe el "Slant Shear Test" como el ensayo de cilindros fabricados de la unión de dos medios cilindros de 76.2 x 152 mm mediante el uso de resina epóxica. Ambas mitades, una hecha de concreto y la otra de mortero, se obtienen del corte de cilindros monolíticos generando un ángulo de 30° con respecto a la vertical. Luego de unir las partes, se espera el fraguado de la resina y se ensaya el cilindro a compresión para determinar la carga última de compresión y así determinar la resistencia de la junta. El valor de la resistencia de la junta se obtiene

dividiendo la carga última de compresión por la superficie de unión de los medios cilindros.

2.4 BASES TEORICAS

2.4.1 EL CONCRETO

El concreto es un material compuesto (tabla 2.1) formado por partículas de material granular grueso (agregados minerales o rellenador) embebidos en una matriz dura de material (cemento o ligante) que llena los espacios vacíos entre las partículas y burbujas manteniéndolas juntas.

El concreto debe ser homogéneo en todos sus aspectos. Está compuesto por la pasta de cemento (cemento portland y agua), los materiales granulares (agregado grueso y fino).

Tabla 2. 1.Definiciones para el concreto.

CONCRETO	= Rellenador	+ Ligante
Concreto de cemento Pórtland	= Agregado (fino + grueso)	+ Pasta de Cemento
Mortero	= Agregado fino	+ Pasta
Pasta	= Cemento	+ Agua

Los agregados pueden ser obtenidos de diferentes tipos de materiales, sin embargo principalmente hacemos uso de los materiales naturales, comúnmente rocas. Estos son esencialmente materiales inertes los cuales, por conveniencia, son separados en una fracción gruesa y en una fracción fina.

Similarmente el cemento puede ser formulado a partir de diferentes composiciones químicas. Cemento es un nombre genérico que puede ser aplicado a cualquier material ligante. Por lo tanto deben ser utilizados descriptores para calificar al cemento cuando nos referimos a un cemento específico.

2.4.2 PASTA DE CEMENTO

2.4.2.1 CONCEPTO

La pasta de cemento puede ser definida como el resultado de la reacción química del cemento con el agua durante el proceso de hidratación, comprende cuatro elementos fundamentales:

- El gel, nombre con el que se denomina al producto resultante de la relación química e hidratación del cemento.
- Los poros incluidos en ella.
- El cemento hidratado, si lo hay.
- Los cristales de Hidróxido de calcio, o cal libre que pueden haberse formado durante la hidratación del cemento.

2.4.2.2 ENLACE CEMENTO – AGREGADO

La fuerza del concreto depende de la fuerza de la pasta de cemento, de la fuerza del agregado grueso, y de la fuerza de la interfase pasta de cemento – agregado. Hay evidencia considerable para indicar que esta interfase es la región más débil del concreto; por lo general, los incidentes ocurren en la interfase cemento – agregado antes que en cada uno individualmente.

El gel, el cual podemos definir como la parte sólida de la pasta, desempeña el papel más importante en el comportamiento del concreto, especialmente en su resistencia mecánica y su módulo de elasticidad. Las razones de su resistencia aún no están claramente comprendidas, pero se acepta que intervienen dos clases de adherencia cohesivas: atracción física y atracción cohesiva.

La atracción cohesiva es del tipo Van der Waal entre superficie de sólidos separados únicamente por microscópicos poros de gel. Esta adherencia es debida a la gran energía disponible en la superficie de las partículas de gel. Es una característica distintiva de éste el que sus fuerzas internas son pequeñas en comparación con sus fuerzas superficiales.

La adherencia química es igual una causa importante de cohesión. Dado que el gel tiene capacidad de esponjamiento limitada, debido a que sus partículas no pueden ser dispersadas por adición de agua, es evidente que ellas están unidas por fuerzas químicas, siendo la ligación de tipo iónico y covalente.

Es importante mencionar que la dimensión y la textura de la superficie del agregado grueso son importantes, puesto que puede existir una cantidad considerable de anclaje mecánico entre el mortero y el agregado grueso; las fuerzas de flexión y extensibles de los concretos hechos con agregados ásperos pueden estar hasta 30% más alto, que aquellos que se prepararon con agregados lisos.

La región del enlace es peligrosa porque las grietas existen invariables en la interfase pasta de cemento-agregado, las cuales se interconectan uniformemente, para un concreto continuamente curado con agua y antes de la aplicación de cualquier carga externa.

Estas grietas son debido al sangrado, segregación y a los cambios de volumen de la pasta de cemento durante la colocación y la hidratación. Cuando ocurre el curado ordinario, que es acompañado por el secado, las partículas de los agregados tienden a refrenar la contracción debido a su módulo elástico más alto. Esto induce corte o cizalla y fuerzas extensibles en la interfase, que crecen con el aumento de tamaño de partícula, y que causan que se quiebre adicionalmente, si exceden la fuerza en el enlace. Bajo carga la diferencia entre los módulos elásticos del agregado y la pasta de cemento tienden a producir más fácilmente las fisuras.

2.4.3 COMPONENTES DEL CONCRETO

2.4.3.1 **CEMENTO**

Es un material aglomerante que tiene las propiedades de adherencia y cohesión necesarias para unir áridos entre sí, formando una masa sólida que cumple las características y propiedades que más adelante se detallarán. Este material se fabricó por primera vez en 1824 en Inglaterra.

2.4.3.1.1 TIPOS DE CEMENTO PORTLAND

Para satisfacer ciertos requerimientos físicos y químicos para propósitos específicos, se elaboran diferentes tipos de cemento Portland. Las especificaciones standard para estos tipos de cemento y los métodos de prueba se encuentran al detalle en las especificaciones ASTM. La American Society for Testing and Materials (ASTM), provee cinco tipos de cemento Portland: Tipo I, II, III, IV y V.

ASTM tipo I

Este tipo de cemento es de uso general. Es apropiado para todos los usos cuando no son requeridas las propiedades especiales de los otros tipos de cemento. Es usado cuando el cemento o el concreto no están sujetos a exposiciones específicas, tales como ataque de sulfatos del suelo o agua a una elevada temperatura, ocasionada por el elevado calor de hidratación. Sus usos incluyen pavimentos y veredas, concreto armado parta edificios, puentes, estructuras de líneas férreas, tanques, reservorios, alcantarillas, tuberías de agua, unidades de albañilería, etc.

ASTM tipo II

El tipo II de cemento es usado donde no se requiere una excesiva protección contra ataques de sulfatos; es decir, donde los ataques por sulfatos no son muy severos. El tipo II de cemento usualmente generará menos calor de hidratación que el cemento tipo I o cemento normal; por consiguiente, este tipo de cemento puede ser usado en estructuras de masas de concreto considerables, como son: grandes pilares, estribos voluminosos o gruesos muros de contención. Su uso, en general, será para reducir la temperatura de hidratación, la cual es muy importante cuando se trabaja en regiones calurosas. Este tipo de cemento es inferior en el contenido de aluminato tricalcico (Ca3AI). Por consiguiente, es inferior en la generación de calor, y algo más resistente a los sulfatos que el tipo I. el contenido de (Ca3AI) no debe exceder del 8%.

ASTM tipo III

Este tipo de cemento de resistencias iniciales altas adquiere sus resistencias una semana o menos del vaciado. Se usa cuando los encofrados o formas tienen que ser retiradas lo antes posible para otro uso, o cuando la estructura debe ser puesta en servicio lo antes posible. En tiempo frío, su uso permite una reducción en el tiempo de curado.

Este cemento produce un alto calor de hidratación, por lo cual es peligroso su uso en estructuras masivas. Estas características lo dan los granos finos y los montos mayores de (Ca3Si) y (Ca3Al).

ASTM tipo IV

Este cemento se usa donde el calor de hidratación debe ser reducido al mínimo. Desarrolla resistencias a más largo plazo que el tipo I o normal, se usa en estructuras masivas de concreto tales como grandes presas de gravedad, donde la elevación de temperatura resultante del calor generado durante el endurecimiento del concreto es un factor crítico. Presenta (Ca3AI) en baja proporción.

ASTM tipo V

Este tipo de cemento es usado solamente en concretos que van a estar expuestos a una severa acción de sulfatos. Se usan principalmente donde los suelos, o aguas en contacto con la estructura, tienen un alto contenido de sulfato. Este cemento adquiere resistencia más lentamente que el tipo I o normal. Presenta (Ca3AI) en baja proporción, generalmente no más de 5%, pero preferible que no sea más de 4%.

2.4.3.2 LOS AGREGADOS PARA EL CONCRETO

Se define a los agregados como materiales inertes, granulares y debidamente graduados, que son aglomerados por la pasta del cemento para formar la estructura resistente del concreto. Pueden ser arena, grava o piedra triturada, ocupando el 70 al 75% del volumen del concreto.

Como los agregados constituyen los componentes predominantes del concreto, su selección es importante debiendo consistir en partículas que soporten y resistan las condiciones de la intemperie, además, no deben contener materiales que produzcan efectos perjudiciales. Para el uso eficaz del cemento, es conveniente que la gradación de los agregados sea continua.

A los agregados suele denominárseles inertes porque no participan en las reacciones químicas entre el cemento y el agua, sin embargo, debido al volumen con el que participan en la preparación del concreto (aproximadamente ocupan las tres cuartas partes del volumen del mismo), la calidad de los mismos es de suma importancia.

El tamaño básico de agregado para un determinado elemento se fijará de acuerdo a varios criterios; en especial, la separación de varillas y la distancia de estas a los encofrados, la altura de las losas, etc.

2.4.3.2.1 CLASIFICACION DE LOS AGREGADOS

2.4.3.2.1.1 AGREGADO FINO

Según la norma NTP 400.011, se define como agregado fino, aquel que pasa por el tamiz 9,51 mm (malla 3/8) y queda retenido en el tamiz 74µm (malla N°200), proveniente de la desintegración natural o artificial de rocas. El agregado puede consistir de arena natural o manufacturada, o una combinación de ambas. Sus partículas serán limpias, de perfil preferentemente angular, duro, compactadas y resistentes.

2.4.3.2.1.2 AGREGADO GRUESO

Según la norma NTP 400.011, se define como agregado grueso, aquel que queda retenido en el tamiz 4.76mm (N°4), proveniente de la desintegración natural o mecánica de rocas.

2.4.3.3 AGUA PARA CONCRETO

Se sabe que el agua es el elemento indispensable para la hidratación del cemento y el desarrollo de sus propiedades, por lo tanto éste elemento debe cumplir con ciertos requisitos para llevar acabo su función en la combinación química, las cuales son las siguientes:

- Reaccionar con el cemento para hidratarlo.
- Actuar como lubricante para contribuir con la trabajabilidad del conjunto.

Por lo tanto, la cantidad de agua que interviene en la mezcla de concreto es normalmente por razones de trabajabilidad, mayor de la necesaria para la hidratación del cemento.

En relación con su empleo en el concreto, el agua tiene dos diferentes aplicaciones: como ingrediente en la elaboración de las mezclas y como medio de curado de las estructuras recién construidas.

En el primer caso, es como el agua de mezclado, y en el segundo se emplea exteriormente cuando el concreto se cura con agua. Aunque en estas aplicaciones las características del agua tienen efectos de diferente importancia sobre el concreto, es usual que se recomiende emplear agua de una sola calidad en ambos casos.

Como componente del concreto convencional, el agua suele representar aproximadamente entre 10 y 25 % del volumen del concreto, pues cualquier sustancia dañina que contenga, aun en proporciones reducidas, puede tener efectos adversos, significativos en el concreto.

El concreto conteniendo tan pequeña proporción de agua, seria sin embargo muy seco y excesivamente difícil de compactar. Por lo tanto, se añade más agua para lubricar la mezcla, esto es, para hacerla manejable y ya que toda esta agua se vapora cuando el concreto seca, dejando huecos, es importante que el agua añadida para lubricación de la mezcla sea mantenida a un mínimo.

Si el concreto no es compactado perfectamente, pueden quedar atrapadas numerosas burbujas de aire que originarían huecos. Existen entonces dos fuentes principales de huecos en el concreto, las burbujas de aire atrapadas y el agua que se evapora. Las burbujas de aire son más fácilmente eliminadas de mezclas fluidas, que de mezclas secas. Estas últimas necesitan de un considerable trabajo para liberar el aire. De esto se sigue, que para cualquier método dado de comparación que representa un cierto trabajo, existe un contenido óptimo de agua, para el cual el volumen del aire atrapado, más el volumen de huecos dejado por el agua evaporada sea el mínimo. El concreto con el mínimo volumen de huecos en total es el más denso y el más resistente por lo tanto, el más deseable.

La conclusión, obtenida de lo anteriormente dicho, es que el concreto más denso y más resistente se obtiene usando la mínima cantidad de agua con el grado de manejabilidad requerida para dar la máxima densidad.

En todo caso, la consideración contraria podría ser las más conveniente, es decir, que el agua para la elaboración del concreto no necesariamente requiere ser potable, aunque si debe satisfacer determinados requisitos mínimos de calidad.

2.4.4 PRINCIPALES PROPIEDADES DEL CONCRETO

Podemos mencionar como principales propiedades del concreto fresco:

- Trabajabilidad
- Consistencia
- Capacidad
- Segregación
- Exudación
- Contracción
- Peso unitario
- Contenido de aire

En el estado endurecido el concreto presenta las siguientes propiedades:

- Resistencia a la compresión
- Durabilidad
- Impermeabilidad
- Estabilidad volumétrica
- Elasticidad, etc.

2.4.5 ADHESIVO

Los adhesivos se conocen desde tiempos inmemorables y han sido empleados extensamente a lo largo de la historia hasta la actualidad.

El sector de los adhesivos está en pleno crecimiento y su desarrollo será muy importante en los próximos años, dado que ofrece rendimientos similares y en ocasiones superiores a los de otras soluciones para el ensamblaje y el sellado con ventajas en cuanto a ahorro de costes.

Como sistema de unión y/o sellado de materiales, los adhesivos ocupan un lugar que en ocasiones comparten con otros sistemas de unión. No obstante, los adhesivos requieren conocimientos básicos para un adecuado uso y sólo a través de un diseño adecuado de la unión se logran resultados satisfactorios.

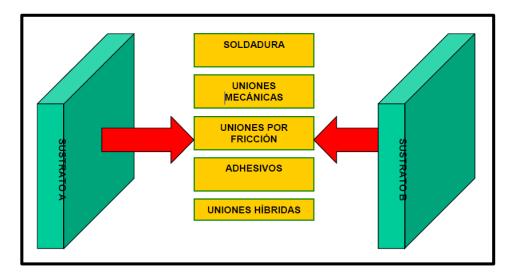


Figura 2. 4. Posicionamiento de los adhesivos.

Se puede definir adhesivo como aquella sustancia que aplicada entre las superficies de dos materiales permite una unión resistente a la separación. Denominamos sustratos o adherentes a los materiales que pretendemos unir por mediación del adhesivo. El conjunto de interacciones físicas y químicas que tienen lugar en la interfase adhesivo/adherente recibe el nombre de adhesión.

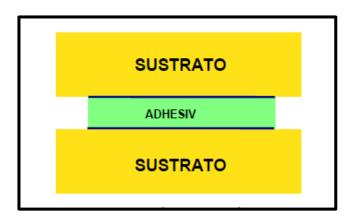


Figura 2. 5. Esquema básico de unión adhesiva.

2.4.5.1 CLASIFICACIÓN DE LOS ADHESIVOS

Una de las clasificaciones más empleadas se basa en el mecanismo de formación de la junta adhesiva. Así, se pueden distinguir dos grandes grupos de adhesivos. Los adhesivos prepolimerizados, es decir, aquéllos cuyo polímero ya existía antes de ser aplicado el adhesivo sobre la unión, y adhesivos reactivos. Estos últimos se caracterizan porque el adhesivo en estado líquido, viscoso, gel, etc. se halla constituido por monómeros o cadenas oligómeras que polimerizan y/o se entrecruzan durante el proceso de polimerización que ocurre cuando tal adhesivo se ubica entre los sustratos a unir. Dentro de estos grandes grupos se definen diversas subclases:

1) Adhesivos Prepolimerizados

- a. En fase líquida
 - i. Soluciones acuosas como los cementos, las colas o el almidón.
 - ii. Soluciones orgánicas como el caucho natural.
 - iii. Emulsiones o líquidas como los adhesivos en base a PVC.

b. En fase sólida

- i. Adhesivos piezosensibles como los adhesivos de contacto o las cintas adhesivas.
- ii. Adhesivos termofusibles o hot melts.

2) Adhesivos Reactivos

- a. Que curan mediante poliadición como los cianoacrilatos, los anaeróbicos o los acrílicos.
- b. Que curan mediante policondensación como los epoxis o las siliconas.

Los principios de la adhesión son comunes a todas las familias adhesivas. Sin embargo, sólo los adhesivos reactivos son capaces de dar soluciones fiables a los problemas de ingeniería.

2.4.5.1.1 ADHESIVOS REACTIVOS

Los adhesivos reactivos son aquéllos que polimerizan durante la unión adhesiva, es decir, cuando se hallan entre los sustratos que se pretende ensamblar.

La profundidad de curado de un adhesivo reactivo depende del grado de iniciación de la reacción de polimerización. En general, los adhesivos monocomponentes que curan mediante diversos sistemas de iniciación superficial (presencia de iones metálicos, presencia de humedad sobre las piezas, humedad ambiental, uso de activadores, etc.) presentan profundidades de curado limitadas. Sin embargo, los sistemas bicomponentes, los cuáles inician la polimerización en todo su volumen, permiten profundidades de curado ilimitadas.

El adhesivo pasa de estado líquido a estado sólido sin pérdida de masa y con inapreciables pérdidas de volumen. Tal característica es básica para realizar adhesiones de alto rendimiento y condición indispensable para obtener sellados fiables. Al no existir solvente alguno en la formulación son adhesivos que no presentan problemas de emisión de agentes inflamables, tóxicos o dañinos para el medio ambiente.

El curado de los adhesivos reactivos tiene lugar según dos posibles mecanismos:

- Poliadición: por adición al abrirse un doble enlace de un monómero que lo contenga.
- Policondensación: por condensación de moléculas sencillas en la reacción de monómeros difuncionales con grupos terminales reactivos.

Un importante efecto que tiene el tipo de polimerización sobre los sistemas adhesivos es el relacionado con los tiempos de manipulación y de curado. Las poliadiciones son reacciones en cadena y tienen velocidades de reacción elevadas. Por el contrario, las policondensaciones son reacciones lentas que producen un incremento paulatino y continuo de la viscosidad del sistema adhesivo.

Los adhesivos anaeróbicos, los cianoacrilatos y los acrílicos curan según un proceso de poliadición. Por este motivo el lapso de tiempo entre la viscosidad inicial detectable y la resistencia a la manipulación de estos adhesivos es muy corto en comparación con el de epoxis o poliuretanos que curan mediante policondensaciones.

En el caso de los epoxis, el adhesivo va espesándose hasta que llegado cierto punto no se recomienda la reposición, incluso mucho antes de que se alcance el tiempo de manipulación. En el caso de los acrílicos la reposición es posible antes de que se llegue a consumir el 80% del tiempo de fijación. Una vez que el acrílico tiene una viscosidad evidente la resistencia a la manipulación se logrará en muy poco tiempo, después del cual no se aconseja la reposición. Con los epoxis y poliuretanos es posible una cierta reposición incluso después de un apreciable incremento de la viscosidad.

Uno de los parámetros que tiene efecto directo sobre el grado de polimerización es la velocidad de polimerización. En las reacciones de poliadición viene determinada fundamentalmente por la etapa de iniciación. Cuando se generan numerosos puntos de crecimiento para las cadenas poliméricas se incrementa la velocidad de polimerización pero, al mismo tiempo, disminuye el grado de polimerización. Los

polímeros que resultan tienen peores propiedades mecánicas. Esto se observa claramente en los adhesivos que, como regla general, dan lugar a uniones más resistentes cuanto menor sea la velocidad de curado. Tal comparación es sólo válida para adhesivos del mismo tipo.

2.4.5.1.1.1 ADHESIVOS REACTIVOS RÍGIDOS

Los adhesivos reactivos rígidos se caracterizan por generar uniones de elevada rigidez. Las familias más, importantes se pueden clasificar según su capacidad de relleno de holguras:

- 1) Adhesivos reactivos rígidos para sustratos coincidentes:
 - a. Anaeróbicos
 - b. Cianocrilatos
- 2) Adhesivos reactivos rígidos con capacidad de relleno de holgura:
 - a. Epoxis

Aunque todos ellos pueden presentar deficiencias en aplicaciones dinámicas o frente a esfuerzos de pelado, existen versiones tenaces de todos ellos que mejoran su comportamiento en tales situaciones.

2.4.5.1.1.1.1 EPOXIS

Los epoxis son adhesivos normalmente bicomponentes en forma de resina más activador. Una vez premezclados la polimerización comienza lentamente por lo que deben ser aplicados sobre las piezas a unir y mantener los sustratos en posición hasta alcanzada la resistencia a la manipulación.

En el pasado la mayoría de los epoxis se formulaban como bicomponentes que debían ser mezclados inmediatamente antes de ser empleados y tenían una vida de mezcla limitada. Sin embargo, en la actualidad existen adhesivos epoxi monocomponentes con un agente endurecedor latente que se libera únicamente por reacción a alta temperatura. Estos adhesivos fueron comercializados en 1975. Por debajo de la Tg de la mezcla (por debajo de 0°C) no se produce reacción alguna. Al elevarse la temperatura comienza la policondensación de la resina.

Los epoxis empleados en aplicaciones estructurales deben ser curados a temperaturas altas o a temperatura ambiente con post-curado por calor. La ventaja del post-curado como operación independiente, incluso en el caso de juntas ya curadas con algo de calor, es que puede ser realizado sin el uso de sistemas de sujeción o sistemas de calentamiento con prensas hidráulicas.

El mayor interés en un reciente pasado se centró en los epoxis tenaces. Estos materiales incorporaban en su formulación un caucho, generalmente nitrilo, capaz de precipitar de forma microdispersa cuando la resina endurece. Con la adición de esta fase de caucho se mejoran las características del adhesivo curado frente a esfuerzos de pelado, sobre todo a bajas temperaturas en las que otros epoxis, como los nylonepoxis, pierden todas sus características de flexibilidad. Los epoxis tenaces bicomponentes fueron introducidos comercialmente en 1973.

Las propiedades de los epoxis son las siguientes:

- Adhieren casi todos los sustratos.
- Gran relleno de holguras.
- Alta resistencia a cizalla y a tracción.
- Adhesivos muy rígidos.
- Resistencia a pelado y a impacto en formulaciones flexibles (epoxi-nitrilo).
- Aunque es dieléctrico y aislante térmico, puede ser modificado, ser conductor de la electricidad y del calor. Además se pueden adicionar cargas para mejorar las características mecánicas (como fibra de vidrio) o para disminuir la densidad (como microesferas neumáticas)
- Son mecanizables
- Resistencia temperaturas de hasta 180°C (hasta 250°C en algunas formulaciones).

Algunas desventajas son:

Presentan problemas de absorción y difusión de la humedad en su seno.

- Sistemas de alto rendimiento bicomponentes y con necesidad de calor, al menos en la etapa de post-curado.
- Problemas de tiempos de curado, vida de la mezcla y necesidad de temperatura para conseguir un alto grado de reticulación.

Los epoxis se emplean en muchas aplicaciones:

- Aditivos para hormigones y elementos de construcción □
- Adhesivos estructurales para la industria aeronáutica
- Fabricación de materiales compuestos
- Recubrimientos superficiales
- Electrónica (circuitos impresos, encapsulación, etc.)
- Imprimaciones

CAPITULO III METODOLOGIA

3.1 DISEÑO METODOLOGICO

3.1.1 TIPO DE INVESTIGACIÓN

De acuerdo al fin que se persigue es del tipo aplicada y de acuerdo a la metodología para demostrar la hipótesis es Experimental.

3.2 OPERACIÓN DE VARIABLES

3.2.1 VARIABLES INDEPENDIENTES

Angulo de corte inclinado.

Epóxico adherente.

Relación agua – cemento a/c.

Edad de fraguado del concreto.

3.2.2 VARIABLE DEPENDIENTE

Resistencia a la compresión.

3.3 ENSAYOS

3.3.1 RESISTENCIA A LA COMPRESIÓN

La resistencia mecánica del concreto endurecido ha sido tradicionalmente la propiedad más identificada con su comportamiento como material de construcción.

En términos generales, la resistencia mecánica, que potencialmente puede desarrollar el concreto, depende de la resistencia individual de los agregados y de la pasta de cemento endurecida, así como, de la adherencia que se produce en ambos materiales. En la práctica, habría que añadir a estos factores el grado de densificación logrando en la mezcla ya que, como ocurre con otros materiales, la proporción de vacíos en el concreto endurecido tiene un efecto decisivo en su resistencia.

Cuando las partículas de los agregados son duras y resistentes. La resistencia mecánica del concreto tiende a ser gobernada por la resistencia de la pasta de cemento y/o por la adherencia de esta con los agregados. Por lo contrario si los agregados son débiles, la resistencia intrínseca de estos se convierte en una limitación para la obtención de altas resistencia, lo cual no quiere decir que el concreto no pueda ser más resistente que las partículas individuales de los agregados.

La adquisición de la resistencia mecánica de la pasta de cemento en el conforme endurece es una consecuencia inmediata del proceso de hidratación de los granos de cemento.

Considerando el trabajo conjunto de los agregados y la pasta de cemento en el concreto endurecido puede suponerse que, si las resistencias individuales de los agregados y de la pasta no son restrictivas, la resistencia última del concreto debe depender sensiblemente de la adherencia entre ambos componentes. Sin embargo está es una situación cambiante con la edad, pues aunque tanto la resistencia de la pasta como adherencia progresan con la hidratación del cemento, su evolución no necesariamente es igual, y así hay evidencia de que en el concreto a edad temprana la resistencia por adherencia suele ser menor que la resistencia de la pasta, en tanto que a edades avanzadas tiende a ocurrir lo contrario.

En los concretos de baja resistencia (menos de 200 kg/cm2), a la edad de servicio (más de 28 días) es frecuente que la resistencia propia de la pasta sea el factor predominante, mientras que en los niveles altos (más de 500 kg/cm2) tiende a predominar la adherencia pasta/agregado como factor determinante de la resistencia del concreto. En los niveles intermedios que son los más usuales en las estructuras ordinarias, la resistencia del concreto puede ser limitada indistintamente por la resistencia de la pasta, la adherencia pasta/agregado, o una combinación de ambas, dependiendo significativamente de las características de forma, textura superficial y tamaño máximo de los agregados.

Figura 3. 1. Ensayo de Resistencia a la Compresión.

3.3.2 ENSAYO DE CIZALLAMIENTO OBLICUO (SLANT SHEAR TEST)

El ensayo de cizalle por compresión se realizará utilizando un procedimiento análogo al descrito en el ASTM C882 (1999): "Standard Test Method for Bond Strenght of Epoxy-Resin Systems Used with concrete by slant shear".

Este método de ensayo sirve para determinar la resistencia de la unión generalmente entre dos substratos de concreto, unidos con algún adhesivo a evaluar, como pueden ser las resinas epoxi. Ha surgido como los avances en las investigaciones de refuerzos estructurales pero puede ser utilizado para medir adherencia entre dos sustratos cualesquiera. Consiste en evaluar la adhesión mediante un esfuerzo de corte o cizallamiento inclinado, como el que se presenta en la figura. Las probetas, cilíndricas o prismáticas, son confeccionadas de tal manera que se les genera un corte a través de un plano inclinado 30º con respecto a la vertical en el cual se aplica el adhesivo a evaluar. De esa manera el esfuerzo de compresión aplicado por la

máquina de ensayo, se descompone en el plano a evaluar, en un esfuerzo de compresión y un esfuerzo de corte.

Normas como la inglesa BS 6319 o la norte americana ASTM C882 / C882M, rigen las condiciones con que debe ser efectuado el ensayo.

Este ensayo a diferencia de los de corte directo o de corte por flexión, le aplica una parte de la carga como esfuerzo normal al plano de deslizamiento. Este esfuerzo normal produce un aumento de la carga necesaria para producir un deslizamiento y eventualmente una desviación del valor a ser medido.

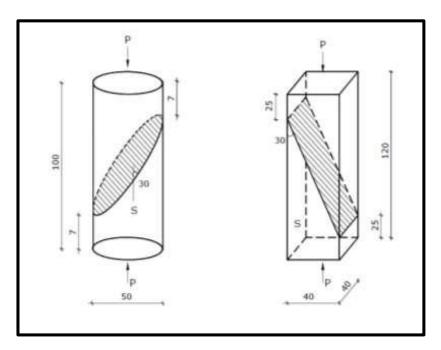


Figura 3. 2. Ensayo de Cizallamiento Oblicuo

Para calcular la tensión de corte último primero es necesario calcular el área nominal (An) de la superficie de la junta. Esto se hizo de la siguiente forma:

$$A_n = \frac{A}{\sin \theta}$$

De esta forma se calcula la tensión de corte última de la junta de concreto como se muestra a continuación.

$$\tau_u = \frac{P_u}{A} \cos \theta \sin \theta$$

Finalmente se obtiene

$$\tau_u = \frac{P_u}{2A} \sin(2\theta)$$

Donde:

 τ_u = Tensión de corte última en el plano de la junta (kg/cm2)

 σ_y = Tensión principal última (kg/cm2)

 P_u = Carga última de la máquina (kgf)

A =Sección transversal del cilindro (cm2)

 θ = Angulo entre el plano de la junta y la arista mayor del prisma o generatriz del cilindro (°).

Ahora, según el cilindro diseñado para el desarrollo del estudio se tiene que $\theta = 30^{\circ}$, 37° , 45° y A= 176.72 cm2. Con esto el valor de la tensión de corte último queda dado por la expresión que se da a continuación.

Para
$$\theta = 30^{\circ}$$
 $\tau_{u} = 0.00245$. *Pu* Kg/cm2

Para
$$\theta=37^{\circ}$$
 $\tau_u=0.00272.Pu$ Kg/cm2

Para
$$\theta = 45^{\circ}$$
 $\tau_u = 0.00283.Pu$ Kg/cm2

El análisis tensional en el plano de la junta para la carga última se describe mediante el círculo de Mohr correspondiente,

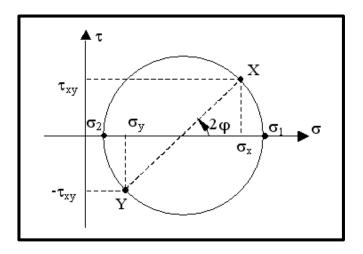


Figura 3. 3. Circulo de Mohr.

3.3.3 ENSAYO DE RECONSTRUCCION DEL CILINDRO

Considerando que la resistencia del concreto para fines de proyecto estructural puede ser evaluada a través de la resistencia a la compresión medida en probetas cilíndricas de 15 cm de diámetro y 30 cm de altura, dos investigadores americanos, Kreigh y Norby, han propuesto un ensayo donde es posible verificar, de manera global, el comportamiento del adhesivo. Se trata pues de ensayar una probeta cilíndrica de 15 cm de diámetro y 30cm de altura, previamente cortada con disco de carborundo en dos mitades a través de una superficie formando un ángulo de 30° con la generatriz del cilindro, de acuerdo con la figura 3.4.

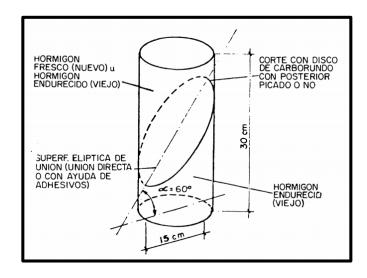


Figura 3. 4. Probeta para ensayo de comprobación.

Después de cortado y seco, la probeta es nuevamente unida, pudiéndose así evaluar el comportamiento de uniones concreto endurecido/concreto fresco.

Las probetas nuevamente recompuestas estarán sujetas a tensiones de compresión, cizallamiento y tracción como en su origen.

El comportamiento es fácilmente calculado a partir de verificación de la capacidad del adhesivo en reconstituir, en toda su plenitud, las características de la probeta original confeccionada con concreto íntegro. En esta evaluación es interesante medir la resistencia a la compresión y observar o fotografiar la forma de rotura de la probeta en el sentido de evaluar la capacidad de reconstitución de la formulación ensayada.

3.3.4 ENSAYO DE RESISTENCIA A FLEXIÓN

La resistencia a flexión es una medida de la resistencia a la tracción del concreto. Es una medida de la resistencia a la falla por momento de una viga o losa de concreto no reforzada. Se mide mediante la aplicación de cargas a vigas de concreto de 6 x 6 pulgadas (15 x 15 cm) de sección transversal y con luz de como mínimo tres veces el espesor. La resistencia a la flexión se expresa como el Módulo de Rotura (MR) en kilogramo por centímetro cuadrado y es determinada mediante los métodos de ensayo ASTM C78 (cargada en los puntos tercios) o ASTM C293 (cargada en el punto medio).

El Módulo de Rotura es cerca del 10% al 20% de la resistencia a compresión, en dependencia del tipo, dimensiones y volumen del agregado grueso utilizado.

El Módulo de Rotura determinado por la viga cargada en los puntos tercios es más bajo que el Modulo de rotura determinado por la viga cargada en el punto medio.

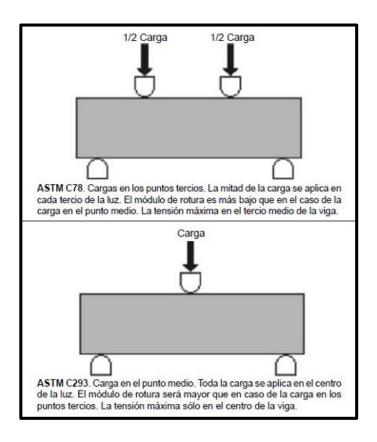


Figura 3. 5. Ensayo de Resistencia a Flexión.

3.4 TRATAMIENTOS UTILIZADOS

Con el fin de determinar la eficacia del tratamiento de superficie aplicado en la transferencia de los esfuerzos de corte y tracción en las juntas frías de concreto es que se variará tipo de preparación que se le dará a la superficie de contacto entre hormigón viejo y nuevo. Para materializar la junta se plantea la utilización de puentes de adherencia, la eliminación de la lechada superficial y generación de una rugosidad de superficie adecuada de forma mecánica.

3.4.1 PUENTE DE ADHERENCIA

Usando este tratamiento se busca determinar la eficacia de la transferencia de esfuerzos al aplicar un puente de adherencia epóxico sobre la superficie de contacto entre los concretos. La resistencia obtenida será íntegramente gracias a la utilización del puente de adherencia ya que al no aplicar ningún tratamiento mecánico existe la

ligazón obtenida gracias a la rugosidad de la superficie de contacto entre los concretos.

Se utilizará tres puentes de adherencia existente en el mercado típicamente usado en obra con el fin de replicar de manera más exacta las condiciones con que se materializan las juntas de concreto en la práctica.

3.4.2 PICADO (50% DE LA SUPERFICIE)

Mediante el picado mecánico del concreto base se espera eliminar la lechada superficial del lugar donde se producirá la interfaz entre los concretos. De esta forma se espera obtener una superficie irregular con lo que se tendrá una ligazón mecánica entre ambos concretos dada por la rugosidad de superficie obtenida. Esta ligazón tendría como resultado una mayor resistencia al corte de la unión.

3.4.3 RUGOSIDAD INTENCIONAL

La rugosidad intencional se generó al momento del vaciado de concreto de la primera etapa, dejando la superficie de contacto rugosa cuando el concreto aún no ha fraguado y así simular el proceso constructivo en obra.

Con la aplicación de los tratamientos ya expuestos será posible comparar la diferencia entre la resistencia que se obtiene al aplicar algún tratamiento epóxico y uno mecánico a la superficie y determinar la influencia de la rugosidad de superficie en la transferencia de los esfuerzos a través de la junta fría de concreto.

CAPITULO IV DESARROLLO DEL PROGRAMA EXPERIMENTAL

4.1 INTRODUCCIÓN

El ensayo de los cilindros se realizó en el laboratorio de materiales de la facultad de Ingeniería Civil, Sistemas y Arquitectura.

Los cilindros fueron fabricados en dos etapas para así dar origen a la junta fría de concreto. El material, las máquinas utilizadas, las dosificaciones de los concretos y el procedimiento para la construcción de las probetas se detallan en el presente capítulo.

4.2 MAQUINARIA Y EQUIPOS

A continuación se muestran las máquinas y los equipos utilizados para el desarrollo de la investigación.

4.2.1 CORTADORA DE CONCRETO DE 14"

El corte de las probetas cilíndricas se realizó con una cortadora de concreto de 14", la profundidad de corte es de 15 cm, su velocidad de rotación es 3600 RPM. Haciendo uso de esta cortadora se seccionó la probeta, ajustando la profundidad de corte con la manivela giratoria.

Figura 4. 1. Cortadora de Concreto de 14"

4.2.2 MEZCLADORA

Para la preparación del concreto se ha empleado una mezcladora de concreto con una capacidad de 130 litros de concreto, su velocidad de rotación del tambor es de 27.7 RPM. Haciendo uso de esta mezcladora se pudo obtener concreto homogéneo.

Figura 4. 2. Mezcladora.

4.2.3 MOLDES CILÍNDRICOS

Para la elaboración de las probetas cilíndricas para el ensayo de compresión se usaron moldes de acero y las dimensiones interiores son 15 cm de diámetro y 30 cm de altura.

Figura 4. 3. Moldes Cilíndricos.

4.2.4 MOLDES RECTANGULARES

En la elaboración de vigas para el ensayo de flexión simple se usaron moldes rectangulares de acero y de dimensiones interiores de 15 cm x 15 cm x 45 cm.

Figura 4. 4. Moldes Rectangulares

4.2.5 MAQUINA DE ENSAYO

El ensayo de compresión se realizó con una maquina perteneciente al Laboratorio de Materiales de la FICSA.

Figura 4. 5. Máquina de ensayo.

4.3 CARACTERISTICA DE LOS MATERIALES

4.3.1 CEMENTO

En la realización del trabajo experimental se utilizó cemento tipo Extraforte Ico, corresponde a un cemento de uso general recomendado para columnas, vigas, losas, cimentaciones y otras obras que no se encuentren en ambientes húmedos-salitrosos. Este cemento tiene propiedades de mejor maleabilidad y moderado calor de hidratación.

• Propiedades:

- Moderado calor de hidratación.
- Mejor trabajabilidad.

Aplicaciones:

- Obras de concreto y de concreto armado en general.
- Morteros en general.
- Pavimentos y cimentaciones.
- > Estructuras de concreto masivo.

Figura 4. 6. Cemento tipo Extraforte Ico.

4.3.2 AGREGADO FINO

El agregado fino es procedente de la cantera la victoria, la granulometría y características se obtuvieron después de realizar los ensayos en el LEM.

Tabla 4. 1. Granulometría del Agregado Fino.

N° MALLA	ABERTURA mm	% RETENIDO	% RETENIDO ACUMULADO	% QUE PASA
3/8"	9.50	0.0	0.0	100
4	4.75	7.5	7.5	92.5
8	2.36	13.2	20.7	79.3
16	1.18	17.9	38.6	61.4
30	0.60	23.6	62.2	37.8
50	0.30	21.9	84.1	15.9
100	0.15	9.8	93.9	6.1
200	0.075	5.5	99.4	0.6
PLATILLO		0.6	100	0.0

Tabla 4. 2. Características del agregado Fino.

CARACTERÍSTICA	VALOR
Humedad Natural (%)	0.552
Absorción (%)	0.604
Peso Específico de Masa	2.424
Módulo de Fineza	3.070
Peso Unitario Suelto Seco (gr/cm3)	1.759
Peso Unitario Varillado (gr/cm3)	1.812

4.3.3 AGREGADO GRUESO

El agregado grueso es procedente de la cantera Tres tomas, la granulometría y características se obtuvieron después de realizar los ensayos en el LEM.

Tabla 4. 3. Granulometría del Agregado Grueso.

N° MALLA	ABERTURA mm	% RETENIDO	% RETENIDO ACUMULADO	% QUE PASA
2"	50.00			
1 1/2"	38.00			100.000
1"	25.00	4.950	4.950	95.050
3/4"	19.00	44.750	49.700	50.300
1/2"	12.50	37.250	86.950	13.050
3/8"	9.50	13.025	99.975	0.025
N° 4	4.75	0.025	100.000	0
PLATILLO				

Tabla 4. 4. Característica del Agregado grueso

CARACTERÍSTICA	VALOR
Humedad Natural (%)	0.132
Absorción (%)	0.420
Peso Específico de Masa	2.694
Tamaño Máximo	1 ½"
Tamaño Max. Nominal del A. Grueso	1"
Peso Unitario Suelto Seco (gr/cm3)	1.425
Peso Unitario Varillado (gr/cm3)	1.519

4.3.4 EPOXICOS ADHERENTES

En este trabajo de investigación se utilizaron tres epóxicos adherentes más usados en el sector de la construcción de Perú.

4.3.4.1 SIKADUR 32 GEL

Es un adhesivo de dos componentes a base de resinas epóxicas seleccionadas, libre de solventes. Se usa como adhesivo estructural de concreto fresco con concreto endurecido, como adhesivo entre elementos de concreto, piedra, mortero, acero, fierro, fibra cemento y madera, adhesivo entre concreto y mortero, en anclajes de pernos en concreto o roca, donde se requiere una puesta en servicio rápida (24horas).

Al momento de aplicar Sikadur 32 Gel el concreto debe encontrarse limpio, libre de polvo, partes sueltas o mal adheridas, sin impregnaciones de aceite, grasas, pintura, entre otros. Debe estar firme y sano con respecto a sus resistencias mecánicas.

La superficie de concreto debe limpiarse en forma cuidadosa hasta llegar al concreto sano, eliminando totalmente la lechada superficial. Esta operación se puede realizar con chorro de agua y arena, escobilla de acero, y otros métodos. La superficie a unir debe quedar rugosa.

La colocación de Sikadur 32 Gel se realiza con brocha, rodillo o pulverizado sobre una superficie preparada.

El concreto fresco debe ser vaciado antes de 3 horas a 20°C o 1 hora a 30°C de aplicado el Sikadur 32 Gel. En todo caso el producto debe encontrarse fresco al vaciar la mezcla sobre él. Las propiedades del puente de adherencia utilizado se muestran en la Tabla 4.5.

Figura 4. 7. Sikadur – 32 Gel.

Tabla 4. 5. Propiedades de Sikadur 32 Gel

Propiedad	Edad	Valor	Unidad
Densidad		1.6	Kg/lts
Resistencia a compresión	1 día	75	MPa
Resistericia a compresion	10 días	90	MPa
Resistencia a flexión	10 días	34	MPa
Adherencia		> 13	MPa
Fuerza de arrancamiento de anclaje en hórmigon H25		6000	kgf
Pot life a 20 °C		25	min
Consumo		03 a 0.5	kg/m2

4.3.4.2 CHEMA EPOX ADHESIVO 32

Pegamento gris compuesto por resinas epóxicas y cargas seleccionadas de dos componentes de alta adherencia y elevadas resistencias mecánicas. Asegura una unión perfecta entre concreto fresco y endurecido, concreto con metal y otros. Este pegamento una vez mezclado puede aplicarse como puente de adherencia o para

preparar un mortero epóxico de reparación en elementos estructurales (de concreto o como relleno de cangrejeras).

Para su aplicación la superficie debe estar totalmente limpia, seca y libre de humedad, eliminándose el polvo, grasa, pintura y aceite de la superficie, debiendo dejarse sólo lo que esta estructuralmente sano. Una vez limpia se recomienda sopletear con aire comprimido.

El epóxico preparado como puente de adherencia se debe aplicar con una brocha cubriendo bien la superficie de contacto en tiempo abierto de 2 horas como máximo a una temperatura de 25 °C. El espesor de la capa debe ser alrededor 1mm, dependiendo de la rugosidad de la superficie.

Tabla 4. 6. Propiedades de Chema Epox Adhesivo 32

Propiedad		Valor	Unidad
,			
Peso especifico		5.23	Kg/gal
Viscosidad		108.50	KU
Pot life		2.17	h
Desistancia	1 día	550	Kg/cm2
Resistencia a compresión	3 días	715	Kg/cm2
Compressor	7 días	814	Kg/cm2
	1 día	55	Kg/cm2
Dureza Shore D	3 días	65	Kg/cm2
	7 días	70	Kg/cm2
Secado	Tacto	4.5	h
Jecauc	Tacto duro	24	h
Rendimiento	Relleno de Anclaje	3.35	lt/5kg
i vendimento	Pelicula(1mm de e.p.h)	4.45	m2/5kg

Figura 4. 8. Chema Epox adhesivo 32.

4.3.4.3 ZETA POX O UNIVERSAL

Es un adhesivo epóxico que contiene 100 % resina pura sin color ni cargas. Se presenta en dos componentes: la resina (A) y el endurecedor (B), la mezcla de color gris claro, especial para reparaciones estructurales, resistente a la humedad.

Cumple con las especificaciones ASTM C-881, ASTM C-883, ASTM C-884. Tipo II grado 2 -3, clase B y C.

Se usa como unión de concreto y mortero, normalmente en reparaciones estructurales, como unión de concreto nuevo a viejo, fierro a fierro, adhesivo entre concreto, piedra, acero, fierro y otros.

Para su aplicación la superficie debe estar limpia de polvo, grasa, suciedad, aceites, lubricantes. Los agregados deben estar secos, igual que la superficie a la que se le va a aplicar el producto.

Eliminar todas las partículas sueltas que pudieran quedar en la superficie, escobillar con cepillo de acero.

El tiempo de trabajabilidad después de haber preparado el epóxico es de 2 horas.

Tabla 4. 7. Propiedades de Zeta Pox o Universal

Propiedad	Valor	Unidad
Peso especifico	1	Kg/lt
T. Trabajabilidad (25 °C)	1	h
Resistencia a compresión	> 900	Kg/cm2
Resistencia a flexión	> 900	Kg/cm2
Resistencia a tensión	> 430	Kg/cm2
Rendimiento	0.3 - 0.5	kg/m2

Figura 4. 9. Zeta Epox o Universal.

4.4 DOSIFICACIÓN DEL CONCRETO

La dosificación del concreto se realizó de acuerdo a lo establecido en el ACI 21.

Para la realización del proyecto de investigación se elaboraron diseños de mezclas para las resistencias a la compresión f'c= 210, 245 y 280 kg/cm2, con relación A/C = 0.56, 0.50 y 0.46 respectivamente. Las dosificaciones se detallan en las tablas 4.8, 4.9 y 4.10.

Tabla 4. 8. Dosificación de Concreto f'c= 210 kg/cm2.

MATERIAL	PESO	PROPORCION EN PESO EN EL MISMO ORDEN	PROPORCION EN VOLUMEN
CEMENTO	345 kg		
ARENA	729 kg	1 : 2.23 : 2.87 +	1 : 1.22 : 2.65 +
PIEDRA	989 kg	24.14 lts / bolsa	24.14 lts / bolsa
AGUA	196 litros		

Tabla 4. 9. Dosificación de Concreto f'c= 245 kg/cm2.

MATERIAL	PESO	PROPORCION EN PESO EN EL MISMO ORDEN	PROPORCION EN VOLUMEN
CEMENTO	386 kg		
ARENA	699 kg	1 : 1.91 : 2.56 +	1 : 1.04 : 2.36 +
PIEDRA	989 kg	21.58 lts / bolsa	21.58 lts / bolsa
AGUA	196 litros		

Tabla 4. 10. Dosificación de Concreto f'c= 280 kg/cm2.

MATERIAL	PESO	PROPORCION EN PESO EN EL MISMO ORDEN	PROPORCION EN VOLUMEN
CEMENTO	420 kg		
ARENA	674 kg	1 : 1.69 : 2.35 +	1 : 0.92 : 2.16 +
PIEDRA	989 kg	19.83 lts / bolsa	19.83 Its / bolsa
AGUA	196 litros		

4.5 ELABORACIÓN DE LAS SERIES DE ENSAYOS

Se construyeron ocho tipos de probetas. Tres tipos corresponden a probetas cilíndricas de 15 cm de diámetro de sección transversal y 30 cm de altura con junta unida por epóxico adherente generando ángulos de inclinación de 30, 37 y 45 ° con respecto a la arista mayor, el cuarto tipo corresponde al mismo cilindro, pero

construido monolíticamente, ambos para ser sometidos a un ensayo de compresión, como quinto tipo se fabricó vigas de 15 cm x 15 cm de sección transversal y 45 cm de largo con junta unida por epóxico adherente generando un ángulo de inclinación de 45°, el sexto tipo corresponde a las mismas vigas, pero monolíticas, el séptimo tipo corresponde a probetas cilíndricas vaciadas en primera instancia con la superficie de contacto con rugosidad intencional e inclinación más óptima, luego esta fue completada, mediante una junta con epóxico adherente, para ensayarse a compresión y como último tipo, estas se prepararon al igual que las del séptimo tipo, sin uso de adhesivo en la materialización de la junta.

La fabricación de los tres primeros tipos de probetas cilíndricas con junta fría unida por epóxico adherente se realizaron en dos etapas independientes. La primera etapa comprende medios cilindros, para obtener esto primero se fabricó probetas cilíndricas monolíticas y a los 28 días de edad se cortaron, generando un plano de corte inclinado.

Para realizar el corte se utilizó una cortadora de pavimento, se generaron los planos de corte con las inclinaciones de 30, 37 y 45° con respecto a la arista mayor. De la probeta monolítica se obtuvo dos medias partes.

En el caso de las vigas en la primera etapa se fabricó medias vigas con una cara inclinada 45° con respecto a la arista mayor, las probetas con rugosidad intencional se fabricaron simulando el proceso constructivo en obra, con la superficie de contacto inclinada 45° con respecto a la arista mayor.

La segunda etapa consistió en completar los cilindros y vigas de concreto con la misma resistencia f'c. Durante la fabricación de los especímenes se aplicó tratamiento al plano de unión.

El procedimiento utilizado para la fabricación de las probetas cilíndricas y vigas de ensayo se detalla a continuación.

4.5.1 ELABORACIÓN DE LOS CILINDROS SEGÚN MÉTODO DE RECONSTITUCCIÓN

4.5.1.1 ELABORACIÓN DE PROBETAS PRIMERA ETAPA

El procedimiento utilizado para la mezcla y colocación del concreto fue el siguiente:

Se pesó el cemento, piedra y arena y agua especificados según la resistencia f´c, siguiendo la dosificación del diseño de mezclas.

Se aplicó petróleo sobre las paredes interiores de los moldes para asegurar el fácil desmolde de los cilindros.

Se vació el agua y la piedra dentro de la mezcladora. Luego se agregó la arena y el cemento de manera alternada.

Se mezcló el agua, los agregados y el cemento a una velocidad constante de 27.7 RPM durante 5 minutos.

Se analizó el concreto y de ser necesario se agregó agua para cumplir con el asentamiento del cono establecido.

Se colocó el concreto en los moldes utilizando una plancha de batir, este llenado se realizó en tres partes iguales de igual volumen, la compactación se realizó por cada capa varillando 25 veces uniformemente alrededor de la capa.

Se golpeó ligeramente los lados del molde de 10 a 15 veces con un martillo de goma después de cada capa a fin de cerrar cualquier hoyo de inserción que se haya formado por la varilla.

Enrase la parte superior con la varilla para producir una superficie plana, pareja y a nivel.

A una edad de 28 días la probeta cilíndrica se procedió a ser cortada, el plano de corte que se generó tienen ángulos de inclinación de 30, 37 y 45°. Para realizar el corte se utilizó una cortadora de concreto.

A continuación se muestran imágenes de como quedo la primera etapa de elaboración de probetas.

Figura 4. 10. Corte de Probetas a edad de 28 días

Figura 4. 11. Probetas con plano de corte 30°, 37° y 45°.

4.5.1.2 TRATAMIENDO DE SUPERFICIE DE CONTACTO

Después de haber cortado la probeta cilíndrica, se aplicará tratamientos para obtener una buena adherencia entre concreto antiguo y concreto nuevo, mediante epóxico adherente.

4.5.1.2.1 PICADO

Con la finalidad de dar rugosidad a la superficie de contacto entre los concretos se picó de manera manual el 50% antes de la aplicación del epóxico adherente. Para esto se utilizó comba y cincel, el picado se realizó de manera continua sobre el 50% central de la cara de contacto para evitar generar micro fisuras en la probeta que puedan afectar en la resistencia obtenida o el desprendimiento de los bordes debido a los golpes.

Se generó una rugosidad de al menos 5 mm, se espera obtener una ligazón mecánica en la unión que entregue como resultado una mejor transferencia de esfuerzos a través del plano de la junta fría de concreto.

Finalmente, se eliminó las partículas sueltas, se mojó y limpió con una brocha la superficie para dejarla libre de polvo. A continuación la figura 4.12 se muestra la rugosidad de superficie lograda tras la aplicación del tratamiento.

Figura 4. 12. Picado de 50% de superficie de contacto.

4.5.1.2.2 EPÓXICO ADHERENTE

Se preparó el epóxico adherente según las proporciones en peso indicadas en las hojas técnicas de cada producto, se mezcló de forma manual hasta asegurar la homogeneidad de la mezcla. Luego se aplicó el epóxico sobre la superficie de contacto con una brocha, previamente haber realizado el tratamiento de picado. Este proceso se realizó siguiendo las indicaciones y recomendaciones de la hoja técnica y procurando colocar el concreto nuevo antes de 30 minutos de aplicado el epóxico adherente.

Figura 4. 13. Superficie de contacto luego de aplicar el Adhesivo.

4.5.1.3 ELABORACIÓN DE PROBETA SEGUNDA ETAPA

Habiendo cumplido el concreto de la primera etapa la edad de 28 días y se haya aplicado el tratamiento de picado y epóxico adherente se procedió a colocarlo dentro de los moldes para completar la construcción de las probetas cilíndricas. Después de haber colocado la primera parte dentro de los moldes, el mezclado y la colocación del concreto de la segunda etapa es análogo al procedimiento indicado en 4.5.1.1 con la salvedad que esta muestra no se corta.

Figura 4. 14. Moldes una vez colocado el concreto de la segunda etapa.

4.5.2 ELABORACIÓN DE PROBETAS CILINDRICAS MONOLÍTICAS

Se elaboraron probetas cilíndricas para cada resistencia, los que serían utilizados para ensayarlos a compresión, estas serán las muestras de control.

Estas probetas cilíndricas se construyeron con el mismo procedimiento utilizado en 4.5.1.1 con la salvedad que estas no se cortaron. La figura 4.15 muestra especímenes de concreto elaborados monolíticamente.

Figura 4. 15. Especímenes de control de concreto monolítico.

4.5.3 ELABORACIÓN DE VIGAS

4.5.3.1 ELABORACIÓN DE VIGAS PRIMERA ETAPA

Se elaboraron seis vigas de concreto sin refuerzo para someterlas a ensayo de flexión, el procedimiento utilizado para la mezcla y colocación del concreto fue el siguiente:

Se pesó el cemento, piedra, arena y agua especificados, siguiendo la dosificación del diseño de mezclas elaborado para un concreto de resistencia f'c= 210, 245 y 280 kg/cm2.

Se aplicó petróleo sobre las paredes interiores de los moldes para asegurar el fácil desmolde y se instaló la pared divisoria para generar una cara con inclinación de 45° con respecto a la arista mayor.

Se vació el agua y la piedra dentro de la mezcladora. Luego se agregó arena y cemento de manera alternada.

Se mezcló el agua, los agregados y el cemento a una velocidad constante de 27.7 RPM durante 5 minutos.

Se analizó el concreto y de ser necesario se agregó agua para cumplir con el asentamiento del cono establecido.

Se colocó el concreto en los moldes utilizando una plancha de batir, este llenado se realizó en tres partes iguales de igual volumen, la compactación se realizó por cada capa varillando 25 veces uniformemente alrededor de la capa.

Se Golpeó ligeramente los lados del molde de 10 a 15 veces con un martillo de goma después de cada capa a fin de cerrar cualquier hoyo de inserción que se haya formado por la varilla.

Enrase la parte superior con la varilla para producir una superficie plana, pareja y a nivel.

A continuación se muestra una foto de los moldes luego de aplicar el concreto de la primera etapa.

Figura 4. 16. Llenado de concreto en vigas primera etapa.

4.5.3.2 TRATAMIENDO DE SUPERFICIE DE CONTACTO

Después de haber vaciado el concreto, se aplicará tratamientos para obtener una buena adherencia entre concreto antiguo y concreto nuevo, mediante epóxico adherente.

4.5.3.2.1 PICADO

Con la finalidad de dar rugosidad a la superficie de contacto entre los concretos se picó de manera manual el 50% antes de la aplicación del epóxico adherente. Para esto se utilizó comba y cincel, el picado se realizó de manera continua sobre el 50% central de la cara de contacto para evitar generar micro fisuras en la probeta que puedan afectar en la resistencia obtenida o el desprendimiento de los bordes debido a los golpes.

Se generó una rugosidad de al menos 5 mm, se espera obtener una ligazón mecánica en la unión que entregue como resultado una mejor transferencia de esfuerzos a través del plano de la junta fría de concreto.

Finalmente, se eliminó las partículas sueltas y se mojó y limpió con una brocha la superficie para dejarla libre de polvo.

4.5.3.2.2 EPÓXICO ADHERENTE

Se preparó el epóxico adherente según las proporciones en peso indicadas en las hojas técnicas de cada producto, se mezcló de forma manual hasta asegurar la homogeneidad de la mezcla. Luego se aplicó el epóxico sobre la superficie de contacto con una brocha, previamente haber realizado el tratamiento de picado. Este proceso se realizó siguiendo las indicaciones y recomendaciones de la hoja técnica y procurando colocar el concreto nuevo antes de 30 minutos de aplicado el epóxico adherente.

Figura 4. 17. Superficie de contacto luego de aplicar el Adhesivo.

4.5.3.3 ELABORACIÓN DE VIGA SEGUNDA ETAPA

Habiendo cumplido el concreto de la primera etapa la edad de 28 días y se haya aplicado el tratamiento de picado y epóxico adherente se procedió a colocarlo dentro de los moldes para completar la construcción de las vigas. Después de haber colocado la primera parte dentro de los moldes, el mezclado y la colocación del concreto de la segunda etapa es análogo al procedimiento indicado en 4.5.2.1.

4.5.4 ELABORACIÓN DE PROBETAS CILÍNDRICAS SIMULANDO PROCESO CONSTRUCTIVO EN OBRA

4.5.4.1 ELABORACIÓN DE PROBETAS PRIMERA ETAPA

Se elaboraron mitades de probetas cilíndricas, dejando la superficie de contacto con inclinación de 45° con respecto a la generatriz, además el vaciado de esta fue dejando la superficie de contacto con rugosidad intencional.

El proceso de preparación y llenado de concreto dentro de los moldes fue similar al que se indicó en 4.5.1.1.

Figura 4. 18. Elaboración de probetas primera etapa simulando proceso constructivo.

4.5.4.2 TRATAMIENTO DE SUPERFICIE DE CONTACTO

Antes de la colocación del concreto de la segunda etapa, se le dio tratamiento a la superficie de contacto, estos se detallan a continuación.

4.5.4.2.1 **ESCOBILLADO**

El tratamiento consistió en eliminar la lechada superficial o concreto suelto, utilizando una escobilla de fierro, evitando generar microfisuras al concreto.

Después del escobillado, se limpió la superficie usando aire a presión, eliminando la mayor cantidad de partículas sueltas de polvo, siendo esto muy perjudicial en la unión de concretos.

Figura 4. 19. Escobillado y limpieza de superficie de contacto entre concretos.

4.5.4.2.2 EPÓXICO ADHERENTE

Se aplicó el epóxico sobre la superficie de contacto con una brocha, previamente haber realizado el tratamiento de escobillado. Este proceso se realizó siguiendo las indicaciones y recomendaciones de la hoja técnica y procurando colocar el concreto nuevo antes de 30 minutos de aplicado el epóxico adherente.

Figura 4. 20. Aplicación de epóxico adherente en superficie de contacto.

4.5.4.2.3 SIN EPÓXICO ADHERENTE

Para evaluar la eficiencia de los adhesivos, se prepararon muestras de control, las cuales fueron escobilladas y limpiadas, pero no se aplicó epóxico adherente a la superficie de interfaz de concreto antiguo y concreto nuevo.

4.5.4.3 ELABORACIÓN DE PROBETAS SEGUNDA ETAPA

Para completar la probeta cilíndrica, se preparó concreto con la misma resistencia de diseño de las probetas de la primera etapa y después de haber obtenido la superficie de contacto limpia y habiendo aplicado el tratamiento, la probeta de la primera etapa fue introducida dentro del molde y el concreto fresco fue colocado en tres capas hasta completar el cilindro. Cada capa de concreto fue varillada.

Figura 4. 21. Colocación de molde y llenado de la segunda etapa de concreto.

4.5.4.4 CURADO DE PROBETAS CILÍNDRICAS Y VIGAS

El curado de probetas cilíndricas y vigas se realizó introduciéndolas en un estanque con agua por un periodo mínimo de 7 días.

Se trasladaron a un área que las mantuviesen bajo sombra. Los cilindros fueron dispuestos de manera vertical, apilados uno al lado de otro hasta que se completó la edad necesaria para trasladarlas al laboratorio y proceder a realizar los ensayos de compresión en caso de las probetas y a flexión en el caso de las vigas.

4.5.5 ENSAYO DE LAS PROBETAS CILÍNDRICAS

Este ensayo se realizó a probetas a edades de 7, 14 y 28 días del concreto nuevo, se trasladaron las probetas al laboratorio de Materiales de la FICSA. Ahí con el cilindro ubicado correctamente y con ayuda del personal técnico encargado de manipular la máquina, se aplicó una carga de compresión hasta llegar a la falla de la probeta (la cual pudo ser provocada por las solicitaciones de corte en el plano de la junta o por el esfuerzo de compresión al que se sometió el concreto). La figuras 4.22 y 4.23 muestran fallas del cilindro después de ser sometido al ensayo.

4.5.5.1 ENSAYO DE COMPRESIÓN DE PROBETAS SECCIONADAS

Figura 4. 22. Falla por corte o deslizamiento.

Figura 4. 23. Falla por compresión.

4.5.5.2 ENSAYO DE COMPRESIÓN DE PROBETAS CON SIMULACIÓN DE PROCESO EN OBRA

Figura 4. 24. Falla por compresión, evidencia de transmisión de esfuerzos.

Figura 4. 25. Falla por compresión sin deslizamiento entre concretos.

4.5.5.3 ENSAYO DE FLEXIÓN

Este ensayo se realizó a la edad de 28 días del concreto nuevo, se trasladaron las probetas al laboratorio de Materiales de la FICSA. Con ayuda del técnico el espécimen es centrado en los bloques de apoyo; estos a su vez deben estar centrados respecto a la fuerza aplicada. Los bloques de aplicación de carga se ponen en contacto con la superficie del espécimen en los puntos tercios entre los apoyos, teniendo un contacto total entre la aplicación de la carga y los bloques de apoyo con la superficie del espécimen.

La carga es aplicada hasta que la viga falle (la cual pudo ser provocada por las solicitaciones de corte en el plano de la junta o por el esfuerzo de flexión al que se sometió el espécimen). La figura 4.26 muestra la disposición de la viga para el ensayo.

Figura 4. 26. Ensayo de resistencia a flexión con carga en el centro.

CAPITULO V RESULTADOS

5.1 INTRODUCCIÓN

A continuación se muestran los resultados obtenidos en el ensayo de compresión según el tipo de concreto de diseño, ángulo de inclinación de la superficie de contacto de los concretos, tratamiento realizado, epóxico adherente y edad del concreto nuevo.

Además se detallan los resultados obtenidos para las vigas ensayadas a flexión según el tipo de concreto de diseño y a una edad de 28 días del concreto nuevo, el plano de inclinación de la superficie de contacto es de 45° con respecto a la arista mayor.

5.2 ENSAYO DE COMPRESIÓN A PROBETAS APLICANDO MÉTODO DE RECONSTITUCIÓN

Los resultados obtenidos para la carga máxima de compresión se muestran según el tipo de concreto utilizado para la fabricación de las probetas cilíndricas, el tipo de epóxico adherente y el tratamiento de superficie aplicado en la interfaz entre los concretos.

Mediante observación se determinó el tipo de falla, al someter las probetas al ensayo de compresión.

5.2.1 ENSAYO DE COMPRESIÓN GRUPO EXPERIMENTAL

A continuación se muestran los resultados de los ensayos de compresión realizados a las probetas cilíndricas, elaboradas de concreto de f'c= 210, 245 y 280 kg/cm2.

5.2.1.1 RESISTENCIA A LA COMPRESIÓN A LOS 7 DIAS DE EDAD DEL CONCRETO NUEVO.

Las siguientes tablas muestran los resultados del ensayo de compresión que se realizó a las probetas cuando el concreto nuevo (segunda etapa) tiene la edad de 7 días, el curado de probetas se hizo con agua.

Tabla 5. 1. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Sikadur 32 Gel a edad de 7 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
41-1			93.37		Corte
41-2		30°	96.20	94.79	Corte
42-1			94.79		Corte
8-1			96.20		Corte
8-2	210	37°	99.03	97.14	Corte
10-1			96.20		Corte
24-1			108.93		Compresión
24-2		45°	101.86	104.22	Compresión
25-1			101.86		Compresión
76-1		30°	101.86	100.45	Corte
76-2		30	99.03	100.10	Corte
57-1	245	37°	110.35	110.35	Corte
57-2	210	<u> </u>	110.35	110.00	Corte
66-1		45°	118.84	117.43	Compresión
66-2			116.01	117.10	Compresión
112-1			127.32		Corte
112-2		30°	127.32	125.43	Corte
113-1			121.66		Corte
91-1			144.30		Compresión
91-2	280	37°	135.81	139.58	Compresión
92-1			138.64		Compresión
101-1			144.30		Compresión
101-2		45°	141.47	143.36	Compresión
102-1			144.30		Compresión

Tabla 5. 2. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Chema Epox Adhesivo 32 a edad de 7 días de concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
47-1			67.91		Corte
47-2		30°	70.74	70.74	Corte
48-1			73.56		Corte
14-2			79.22		Corte
15-1	210	37°	82.05	80.16	Corte
15-2			79.22		Corte
30-2			90.54		Corte
31-1		45°	87.71	89.60	Corte
31-2			90.54		Corte
79-1		30°	74.98	75.69	Corte
79-2		30	76.39	7 0.00	Corte
60-1	245	37°	82.05	80.64 93.38	Corte
60-2	240		79.22		Corte
36-1		45°	94.79		Corte
36-2		40	91.96	30.00	Corte
116-2			84.88		Corte
127-1		30°	87.71	86.77	Corte
127-2			87.71		Corte
96-2			93.37		Corte
97-1	280	37°	91.96	91.96	Corte
97-2			90.54		Corte
106-2			108.93		Corte
107-1		45°	108.93	109.87	Corte
107-1			111.76		Corte

Tabla 5. 3. Resistencia a la compresión de concreto antiguo y concreto nuevo unidos por Zeta Pox o Universal a edad de 7 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
51-1		30°	96.20	97.62	Corte
51-2		30	99.03	37.02	Corte
20-1			110.35		Corte
20-2	210	37°	107.52	108.93	Corte
21-1			108.93		Corte
69-1		45°	121.66	121.66	Corte
69-2		40	121.66	121.00	Corte
82-1		30°	103.27	101.86	Corte
82-2			100.44	101.00	Corte
63-1	245	37°	113.18	113.89	Corte
63-2	240	01	114.59	110.00	Corte
74-1		45°	141.47	140.77	Corte
74-2		10	140.06	140.77	Corte
131-1			121.66		Corte
131-2		30°	128.74	125.44	Corte
132-1			125.91		Corte
125-1			131.57		Corte
125-2	280	37°	132.98	132.98	Corte
126-1			134.4		Corte
120-1			155.62		Corte
120-2		45°	157.03	154.67	Corte
133-1			151.37		Corte

Figura 5. 1. Falla por corte a 7 días de edad del concreto nuevo, plano inclinado 45° respecto a la generatriz.

Figura 5. 2. Falla por compresión a 7 días del concreto nuevo, plano inclinado 45° con respecto a la generatriz.

5.2.1.2 RESISTENCIA A LA COMPRESIÓN A LOS 14 DIAS DE EDAD DEL CONCRETO NUEVO.

Las siguientes tablas muestran los resultados del ensayo de compresión que se realizó a las probetas cuando el concreto nuevo (segunda etapa) tiene la edad de 14 días, el curado de probetas se hizo con agua.

Tabla 5. 4. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Sikadur 32 Gel a edad de 14 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
38-2			110.35		Corte
40-1		30°	116.01	112.24	Corte
40-2			110.35		Corte
5-2			121.66		Compresión
6-1	210	37°	121.66	120.72	Compresión
6-2			118.84		Compresión
22-2			123.08		Compresión
23-1		45°	124.49	124.02	Compresión
23-2			124.49		Compresión
75-1		30°	121.66	123.08	Corte
75-2		30	124.49	123.00	Corte
56-1	245	37°	125.91	126.62	Compresión
56-2	240	31	127.32	120.02	Compresión
65-1		45°	138.64	137.23	Compresión
65-2		40	135.81	137.23	Compresión
110-2			141.47		Corte
111-1		30°	135.81	138.64	Corte
111-2			138.64		Corte
89-2			152.79		Compresión
90-1	280	37°	155.62	153.73	Compresión
90-2			152.79		Compresión
99-2			158.45		Compresión
100-1		45°	159.86	159.86	Compresión
100-2			161.28		Compresión

Tabla 5. 5. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Chema Epox Adhesivo 32 a edad de 14 días de concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
45-1			89.13		Corte
45-2		30°	86.30	87.24	Corte
46-1			86.30		Corte
12-1			99.03		Corte
12-2	210	37°	99.03	99.97	Corte
14-1			101.86		Corte
27-1			116.01		Corte
27-2		45°	116.01	116.01	Corte
30-1			116.01		Corte
78-1		30°	90.54	91.25	Corte
78-2			91.96		Corte
59-1	245	37°	97.61	97.61	Corte
59-2			97.61		Corte
68-1		45°	104.69	103.28	Corte
68-2		. •	101.86		Corte
115-1			100.44		Corte
115-2		30°	100.44	100.91	Corte
116-1			101.86		Corte
94-1			107.52		Corte
94-2	280	37°	110.35	110.35	Corte
96-1			113.18		Corte
104-1			125.91		Corte
104-2		45°	123.08	124.02	Corte
106-1			123.08		Corte

Tabla 5. 6. Resistencia a la compresión de concreto antiguo y concreto nuevo unidos por Zeta Pox o Universal a edad de 14 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
50-1		30°	113.18	111.77	Corte
50-2		30	110.35	111.77	Corte
17-2			123.08		Corte
18-1	210	37°	120.25	121.19	Corte
18-2	210		120.25		Corte
34-2			137.23		Compresión
35-1		45°	148.54	140.06	Compresión
35-2			134.40		Compresión
81-1		30°	118.84	119.55	Corte
81-2			120.25	110.00	Corte
62-1	245	37°	128.74	128.74	Compresión
62-2		<u> </u>	128.74		Compresión
71-1		45°	155.62	155.62	Corte
71-2		. •	155.62		Corte
129-2			132.98		Corte
130-1		30°	134.40	132.98	Corte
130-2			131.57		Corte
121-2			145.71		Corte
123-1	280	37°	141.47	147.60	Corte
123-2			155.62		Corte
118-2			164.11		Corte
119-1		45°	165.52	165.52	Corte
119-2			166.94		Corte

Figura 5. 3. Falla por corte a 14 días de edad del concreto nuevo, plano inclinado 30° con respecto a la generatriz.

Figura 5. 4. Falla por corte a 14 días de edad del concreto nuevo, plano inclinado 37° con respecto a la generatriz.

5.2.1.3 RESISTENCIA A LA COMPRESIÓN A LOS 28 DIAS DE EDAD DEL CONCRETO NUEVO.

Las siguientes tablas muestran los resultados del ensayo de compresión que se realizó a las probetas cuando el concreto nuevo (segunda etapa) tiene la edad de 14 días, el curado de probetas se hizo con agua.

Tabla 5. 7. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Sikadur 32 Gel a edad de 28 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
37-1			130.15		Corte
37-2		30°	127.32	130.15	Corte
38-1			132.98		Corte
4-1			132.98		Compresión
4-2	210	37°	130.15	132.04	Compresión
5-1			132.98		Compresión
9-1			138.64		Corte
9-2		45°	141.47	139.11	Corte
22-1			137.23		Corte
73-1		30°	138.64	140.06	Corte
73-2		30	141.47	140.00	Corte
55-1	245	37°	147.13	145.72	Corte
55-2	240	31	144.30	143.72	Corte
64-1		45°	148.54	149.25	Compresión
64-2		45	149.96	149.23	Compresión
109-1			169.76		Corte
109-2		30°	168.35	170.23	Corte
110-1			172.59		Corte
88-1			178.25		Compresión
88-2	280	37°	175.42	177.31	Compresión
89-1			178.25		Compresión
95-1			182.50		Compresión
95-2		45°	181.08	181.08	Compresión
99-1			179.67		Compresión

Tabla 5. 8. Resistencia a la compresión de concreto antiguo y concreto nuevo unido por Chema Epox Adhesivo 32 a edad de 28 días de concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
42-2			100.44		Corte
43-1		30°	100.44	100.44	Corte
45-1			100.44		Corte
10-2			107.52		Corte
11-1	210	37°	104.69	106.10	Corte
11-2			106.10		Corte
25-2			137.23		Compresión
26-1		45°	151.37	143.36	Compresión
26-2			141.47		Compresión
77-1		30°	110.35	108.94	Corte
77-2			107.52		Corte
58-1	245	37°	116.01	117.43	Corte
58-2			118.84		Corte
67-1		45°	157.03	152.08	Compresión
67-2			147.13		Compresión
113-2			110.35		Corte
114-1		30°	107.52	110.35	Corte
114-2			113.18		Corte
92-2			117.42		Corte
93-1	280	37°	121.66	119.78	Corte
93-2			120.25		Corte
102-2			166.94		Corte
103-1		45°	166.94	166.47	Corte
103-2			165.52		Corte

Tabla 5. 9. Resistencia a la compresión de concreto antiguo y concreto nuevo unidos por Zeta Pox o Universal a edad de 28 días del concreto nuevo.

				1	
TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
48-2		118.84		Corte	
49-1		30°	120.25	122.14	Corte
49-2			127.32		Corte
16-1			134.40		Corte
16-2	210	37°	130.15	131.57	Corte
17-1			130.15		Corte
33-1			147.13		Corte
33-2		45°	145.71	147.60	Corte
34-1			149.96		Corte
80-1		30°	134.40	132.99	Corte
80-2			131.57	102.00	Corte
61-1	245	37°	138.64	138.64	Corte
61-2	240	01	138.64		Corte
70-1		45°	165.52	164.82	Corte
70-2		-10	164.11	101.02	Corte
128-1			144.30		Corte
128-2		30°	145.71	144.77	Corte
129-1			144.30		Corte
117-1			172.59		Corte
117-2	280	37°	175.42	177.31	Corte
121-1			183.91		Corte
108-1			183.91		Corte
108-2		45°	186.74	183.91	Corte
118-1			181.08		Corte

Figura 5. 5. Falla por corte a 28 días de edad del concreto nuevo, plano inclinado 30° con respecto a la generatriz.

Figura 5. 6. Falla por corte a 28 días de edad del concreto nuevo, plano inclinado 45° con respecto a la generatriz.

5.2.2 ENSAYO DE COMPRESIÓN GRUPO DE CONTROL

En la tabla 5.10 se muestra los resultados de los ensayos de compresión a los cilindros de concreto fabricados monolíticamente.

Tabla 5. 10. Resistencia a la compresión de cilindros de concreto fabricados monolíticamente a los 7, 14 y 28 días de edad.

TESTIGO	EDAD	F'C (Kg/Cm2) DE DISEÑO	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	
01		210	117.42	118.84	
02		210	120.25	110.04	
03	7 DIAS	245	140.06	140.77	
04	7 01710	240	141.47	140.77	
05		280	176.84	176.13	
06		200	175.42	170.13	
07		210	157.03	155.62	
08		210	154.20	133.02	
09	14 DIAS	245	196.64	195.23	
10	14 DIAG	243	193.81	193.23	
11		280	222.11	221.40	
12		∠80		221.40	
13		210	220.69	223.52	
14		210	226.35	220.02	
15	28 DIAS	245	250.40	249.70	
16	20 0170	240	248.99	249.70	
17		280	305.58	304.87	
18		200	304.16		

Figura 5. 7. Falla por compresión de cilindro monolítico.

5.2.3 ENSAYO DE FLEXIÓN GRUPO EXPERIMENTAL

En la tabla 5.11 se muestra los resultados de los ensayos de flexión a las vigas de concreto unidas por epóxico adherente. Se utilizó resistencia f'c= 210 kg/cm2 y el plano de unión entre concreto antiguo y concreto nuevo con inclinación de 45°.

Tabla 5. 11. Resistencia a flexión de vigas de concreto antiguo y concreto nuevo unidas por epóxicos adherentes.

CODIGO DE PROBETA	EDAD DE PROBETA (días)	MR PROPUESTO (Kg/cm2)	EPOXICO ADHERENTE	MODULO DE ROTURA (Kg/cm²)	MR PROMEDIO (Kg/cm²)
01			Chema Epox	11.85	13.33
02			Опетіа Ерох	14.81	13.33
03	28	28.98	Zeta Pox	20.74	21.48
04	20	20.90	Zela FUX	22.22	21.40
05			Sikadur 32	26.67	27.41
06			Sikauui 32	28.15	21.41

A continuación se muestra el ensayo de vigas a flexión con carga en el punto medio.

Figura 5. 8. Ensayo de flexión a vigas de concreto simple, con carga en el centro de la luz.

5.3 ENSAYO DE COMPRESIÓN A PROBETAS SIMULANDO PROCESO CONSTRUCTIVO EN OBRA

En la tabla 5.12 se muestran los resultados de la resistencia a la compresión de probetas construidas con rugosidad intencional, simulando el proceso constructivo de obra, la resistencia de diseño es f'c= 210 kg/cm2 y la superficie de contacto con inclinación de 45° con respecto a la generatriz.

Tabla 5. 12. Resistencia a la compresión de diseño f'c = 210 kg/cm2 y ángulo de superficie de contacto 45°.

TESTIGO	EPOXICO ADHERENTE	EDAD PROBETA (días)	F'C (Kg/Cm2) OBTENIDA	F'C (Kg/Cm2) PROMEDIO	TIPO DE FALLA
1			247.57		Compresión
2	Sikadur 32	38	38 240.50 242.86	242.86	Compresión
3			240.50		Compresión
4	Ola a vas	hema 38	268.79	264.08	Compresión
5	Epox 32		254.65		Compresión
6	LPOX 32		268.79		Compresión

7 200 233.43 Compresión 9 240.50 240.50 Compresión 10 Sin epóxico adherente 37 219.28 Compresión 11 Sin epóxico adherente 37 212.21 212.21 Compresión 13 Sikadur 32 36 233.43 242.86 Compresión 14 Sikadur 32 36 233.43 242.86 Compresión 15 Chema Epox 32 247.57 Compresión Compresión 16 Chema Epox 32 206.55 207.96 Compresión 19 247.57 Compresión Compresión 20 Zeta Pox 35 234.84 236.25 Compresión 21 20 Zeta Pox 35 219.28 219.28 Compresión 22 Sin epóxico adherente 35 219.28 219.28 Compresión 24 183.91 193.34 Compresión Compresión 25 Sikadur 32 34 205.13				1	1	
9	7	Zeta Pox	37	233.43	240.50	Compresión
10	8			247.57		Compresión
11 Sin epóxico adherente 37 212.21 212.21 Compresión 13 247.57 Compresión Compresión 14 Sikadur 32 36 233.43 242.86 Compresión 15 Chema Epox 32 212.21 Compresión Compresión 17 Chema Epox 32 206.55 207.96 Compresión 19 247.57 Compresión Compresión 20 Zeta Pox 35 234.84 236.25 Compresión 21 226.35 Compresión Compresión 22 Sin epóxico 35 219.28 219.28 Compresión 23 adherente 35 219.28 219.28 Compresión 24 183.91 Compresión Compresión 25 Sikadur 32 34 205.13 193.34 Compresión 27 Chema Epox 32 34 183.91 184.38 Compresión 29 Tompresión Compresión Compresión	9			240.50		Compresión
11	10		37	219.28	212.21	Compresión
12	11			212.21		Compresión
14 Sikadur 32 36 233.43 242.86 Compresión 15 247.57 Compresión Compresión 16 Chema Epox 32 36 206.55 207.96 Compresión 18 205.13 207.96 Compresión Compresión 20 Zeta Pox 35 234.84 236.25 Compresión 21 226.35 Compresión Compresión Compresión 22 Sin epóxico adherente 35 219.28 219.28 219.28 Compresión 24 183.91 Compresión Compresión Compresión 25 Sikadur 32 34 205.13 193.34 Compresión 26 190.99 Compresión Compresión 28 Epox 32 34 183.91 184.38 Compresión 29 176.84 Compresión Compresión Compresión 30 183.91 175.42 178.25 Compresión 31 Zeta Pox 33 <td>12</td> <td>205.13</td> <td>Compresión</td>	12			205.13		Compresión
15	13	Sikadur 32	36	247.57	242.86	Compresión
16 Chema Epox 32 36 212.21 Compresión 18 206.55 207.96 Compresión 19 247.57 Compresión 20 Zeta Pox 35 234.84 236.25 Compresión 21 226.35 Compresión Compresión Compresión 22 Sin epóxico adherente 35 219.28 219.28 Compresión 24 183.91 Compresión Compresión 25 Sikadur 32 34 205.13 193.34 Compresión 27 Chema Epox 32 34 183.91 184.38 Compresión 29 176.84 Compresión Compresión Compresión 30 183.91 184.38 Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 32 175.42 190.99 Compresión	14			233.43		Compresión
17 Chema Epox 32 36 206.55 207.96 Compresión Compresión Compresión Compresión 19 247.57 Compresión Compresió	15			247.57		Compresión
The compression The compre	16		36	212.21	207.96	Compresión
18 205.13 Compresión 19 247.57 Compresión 20 Zeta Pox 35 234.84 236.25 Compresión 21 226.35 Compresión Compresión 22 Sin epóxico adherente 35 219.28 219.28 Compresión 24 183.91 Compresión Compresión 25 Sikadur 32 34 205.13 193.34 Compresión 26 190.99 Compresión Compresión 27 Chema Epox 32 192.40 Compresión 29 176.84 Compresión Compresión 30 183.91 184.38 Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 32 175.42 Compresión Compresión 33 Sin anóxico 190.99 Compresión	17			206.55		Compresión
20 Zeta Pox 35 234.84 236.25 Compresión 21 Sin epóxico adherente 35 219.28 219.28 Compresión 23 adherente 35 219.28 219.28 Compresión 24 183.91 Compresión Compresión 25 Sikadur 32 34 205.13 193.34 Compresión 26 190.99 Compresión Compresión 27 Chema Epox 32 192.40 Compresión Compresión 29 176.84 Compresión Compresión 30 183.91 Compresión Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 33 Sin apóxico 190.99 Compresión	18			205.13		Compresión
21 226.35 Compresión 22 Sin epóxico adherente 35 219.28 219.28 Compresión 23 adherente 219.28 219.28 Compresión 24 183.91 Compresión Compresión 25 Sikadur 32 34 205.13 193.34 Compresión 26 190.99 Compresión Compresión 27 Chema Epox 32 192.40 Compresión 29 176.84 Compresión 30 183.91 184.38 Compresión 30 183.91 Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 33 Sin epóxico 190.99 Compresión	19	Zeta Pox	35	247.57	236.25	Compresión
22 Sin epóxico adherente 35 219.28 219.28 Compresión Compresión 24 183.91 Compresión Compresión 25 Sikadur 32 34 205.13 193.34 Compresión 26 190.99 Compresión Compresión 27 Chema Epox 32 192.40 Compresión 29 176.84 Compresión 30 183.91 Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 33 Sin anóxico 190.99 Compresión	20			234.84		Compresión
23 adherente 35 219.28 Compresión 24 183.91 Compresión 25 Sikadur 32 34 205.13 193.34 Compresión 26 190.99 Compresión Compresión 27 192.40 Compresión Compresión 28 183.91 184.38 Compresión 30 183.91 Compresión Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 32 175.42 Compresión Compresión 33 Sin enéxico 190.99 Compresión	21			226.35		Compresión
23 adnerente 219.28 Compresión 24 183.91 193.34 Compresión 25 Sikadur 32 34 205.13 193.34 Compresión 26 190.99 Compresión 27 Chema	22	•	35	219.28	219.28	Compresión
25 Sikadur 32 34 205.13 193.34 Compresión 26 190.99 Compresión Compresión 27 192.40 Compresión Compresión 28 183.91 184.38 Compresión 30 183.91 Compresión Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 32 175.42 Compresión Compresión 33 Sin anóxico 190.99 Compresión	23			219.28		Compresión
26 190.99 Compresión 27 192.40 Compresión 28 Epox 32 183.91 184.38 Compresión 30 183.91 Compresión Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 32 175.42 Compresión Compresión 33 Sin apóxica 190.99 Compresión	24	Sikadur 32	34	183.91	193.34	Compresión
27 Chema Epox 32 34 192.40 Compresión 29 176.84 Compresión 30 183.91 Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 32 175.42 Compresión Compresión 33 Sin apóxica 190.99 Compresión	25			205.13		Compresión
28 Chema Epox 32 34 183.91 184.38 Compresión Compresión Compresión 30 183.91 Compresión Compresión 31 Zeta Pox 33 175.42 178.25 Compresión Compresión 32 175.42 Compresión Compresión Compresión Compresión 33 Sin apóxica 190.99 Compresión	26			190.99		Compresión
28 Epox 32 34 183.91 184.38 Compresion 29 176.84 Compresión 30 183.91 Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 32 175.42 Compresión Compresión 33 Sin enóxico 190.99 Compresión	27		34	192.40	184.38	Compresión
29 176.84 Compresión 30 183.91 Compresión 31 Zeta Pox 33 175.42 178.25 Compresión 32 175.42 Compresión Compresión 33 Sin enóxico 190.99 Compresión	28			183.91		Compresión
31 Zeta Pox 33 175.42 178.25 Compresión 32 175.42 Compresión 33 Sin enéxico 190.99 Compresión	29			176.84		Compresión
32 175.42 Compresión 33 Sin enóxico Compresión	30			183.91		Compresión
33 Sin apóxico 190.99 Compresión	31	Zeta Pox	33	175.42	178.25	Compresión
Sin onóvico	32			175.42		Compresión
SIN epoxico 400.00 400.00 400.00	33	Sin epóxico adherente	33	190.99	193.82	Compresión
1 3/1 1 '	34			198.06		Compresión
35 192.40 Compresión	35			192.40		Compresión

A continuación se muestran fotografías realizando el ensayo de resistencia a la compresión.

Figura 4. 27. Falla por compresión, se evidencia transmisión de esfuerzos.

CAPITULO VI ANALISIS DE RESULTADOS

6.1 INTRODUCCIÓN

En el presente capitulo se analizarán los resultados obtenidos para los ensayos de compresión realizado a las probetas cilíndricas y ensayo de flexión realizado a las vigas. Se estudiará y comparará los resultados obtenidos según las variables definidas. Por esta razón se realiza un análisis según el tipo de adhesivo usado, inclinación del plano de unión entre concretos y edad del concreto nuevo.

6.2 ANÁLISIS DE RESISTENCIA A LA COMPRESIÓN SEGÚN METODO DE RECONSTITUCIÓN

6.2.1 ANÁLISIS DE RESISTENCIA A LA COMPRESIÓN PARA SIKADUR 32 GEL

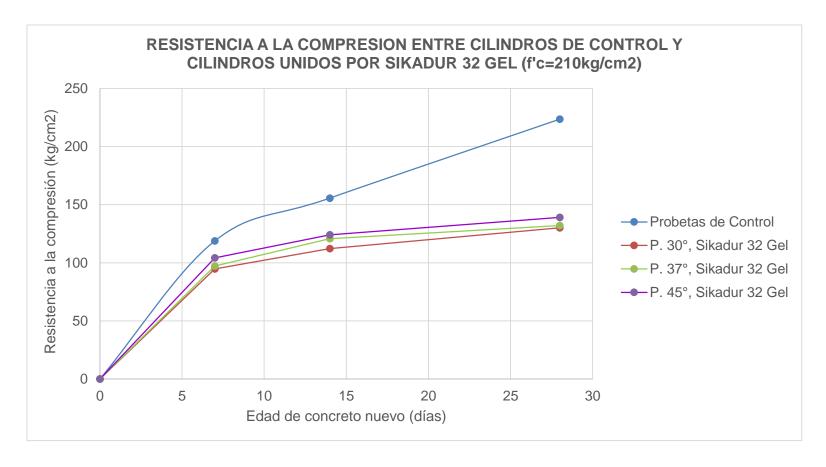


Figura 6. 1. Gráfico comparativo de resistencia a la compresión vs. Edad de concreto nuevo, entre cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 210 kg/cm2.

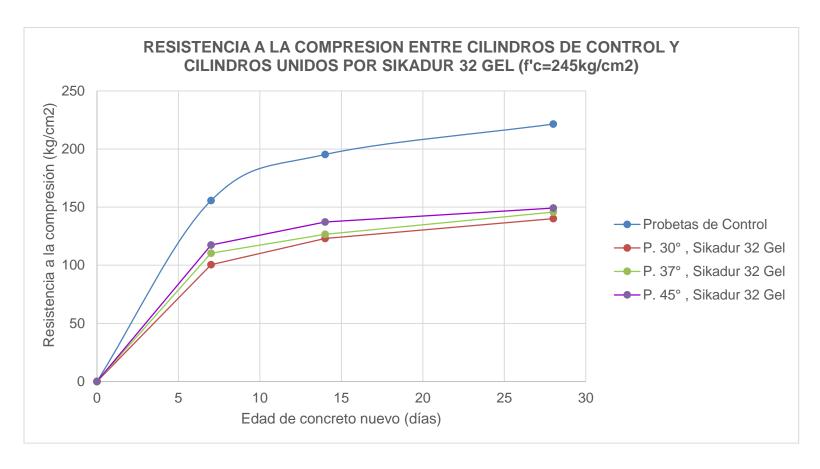


Figura 6. 2. Gráfico comparativo de resistencia a la compresión vs. Edad de concreto nuevo, entre cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 245 kg/cm2.

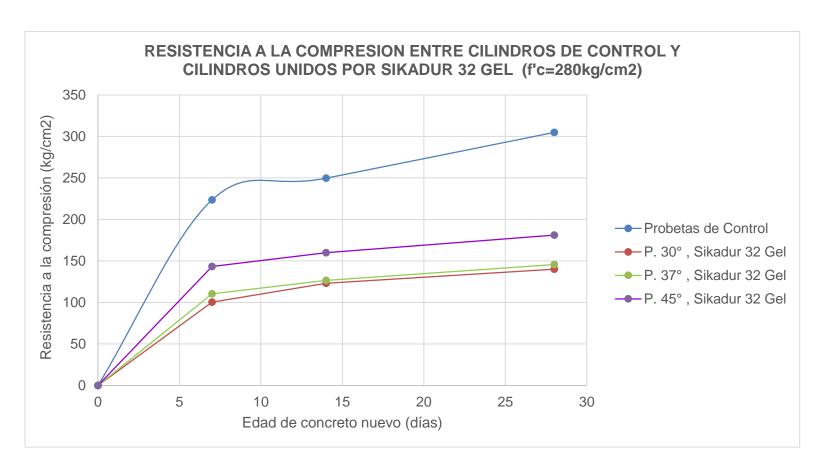


Figura 6. 3. Gráfico comparativo de resistencia a la compresión vs. Edad de concreto nuevo, entre cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 280 kg/cm2.

6.2.2 ANÁLISIS DE RESISTENCIA A LA COMPRESIÓN PARA CHEMA EPOX ADHESIVO 32.

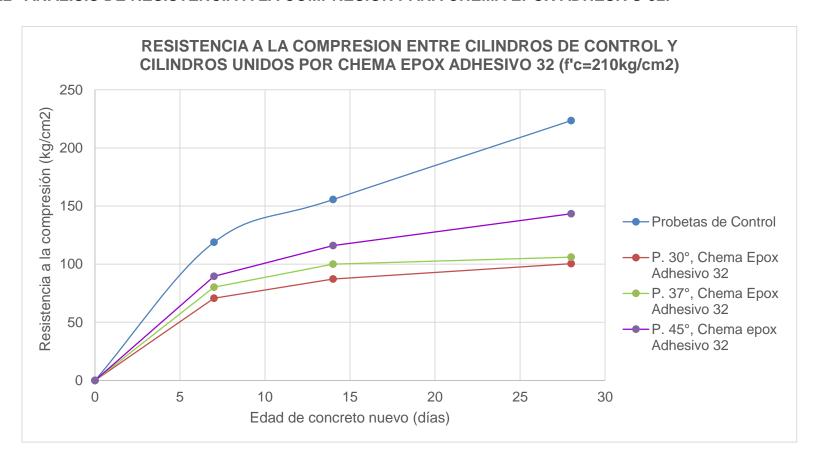


Figura 6. 4. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Chema Epox Adhesivo 32 para f'c = 210 kg/cm2.

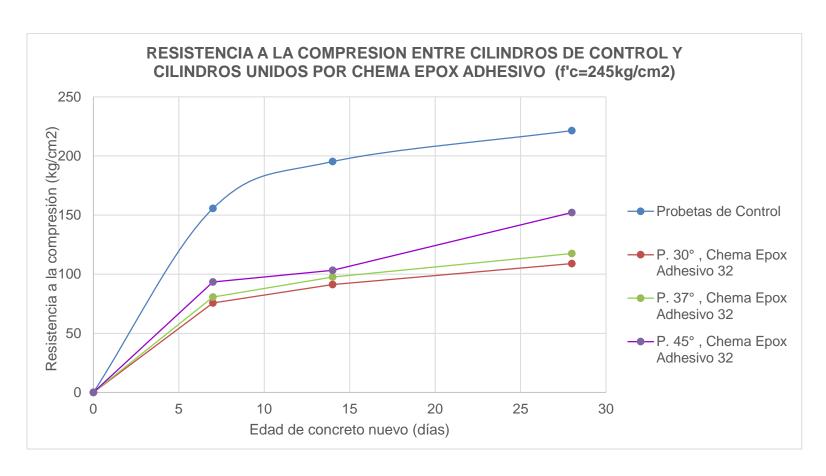


Figura 6. 5. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Chema Epox Adhesivo 32 para f'c = 245 kg/cm2.

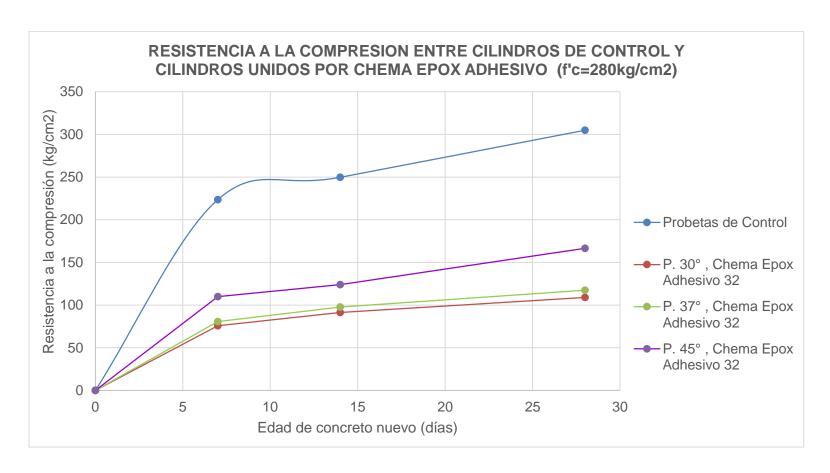


Figura 6. 6. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Chema Epox Adhesivo 32 para f'c = 280 kg/cm2.

6.2.3 ANÁLISIS DE RESISTENCIA A LA COMPRESIÓN PARA ZETA POX O UNIVERSAL.

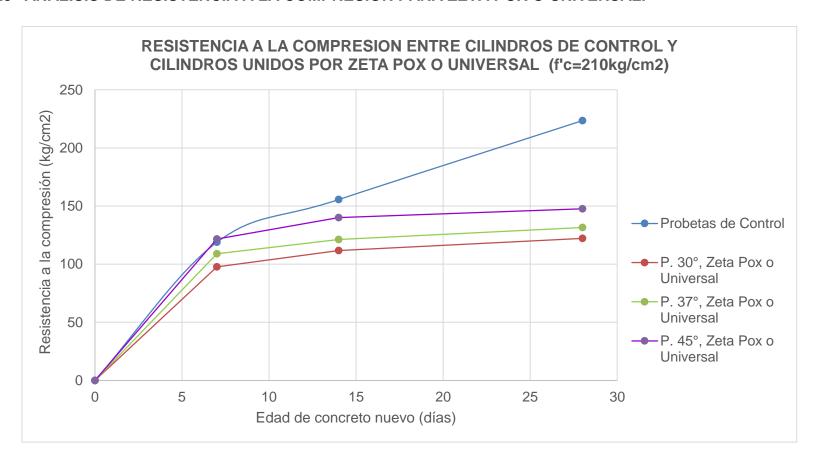


Figura 6. 7. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 210 kg/cm2.

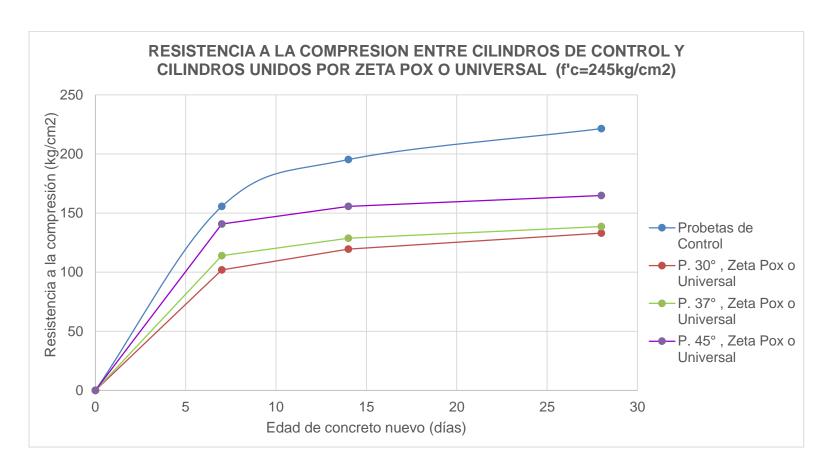


Figura 6. 8. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 245 kg/cm2.

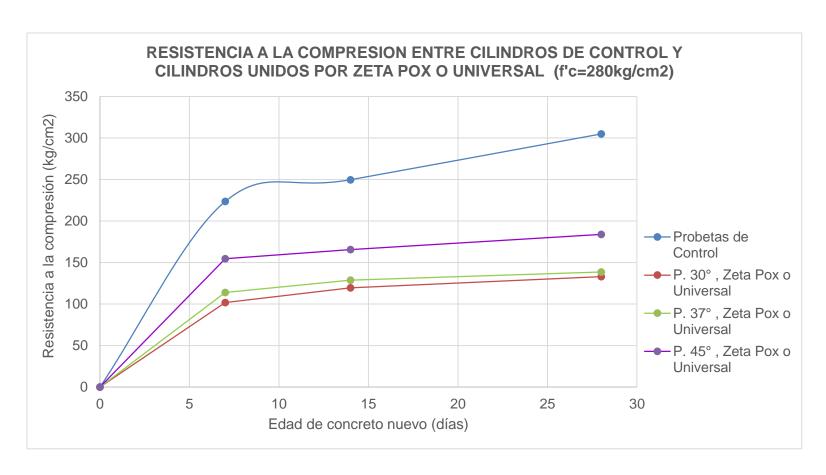


Figura 6. 9. Gráfico comparativo de resistencia a la compresión vs. edad de concreto nuevo, entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 280 kg/cm2.

6.3 ANÁLISIS DE LA TENSIÓN DE CORTE SEGÚN MÉTODO DE RECONSTITUCIÓN

6.3.1 ANÁLISIS DE LA TENSIÓN DE CORTE ÚLTIMA EN EL PLANO DE LA JUNTA PARA SIKADUR 32 GEL.

Tabla 6. 1. Tensión de corte ultima con aplicación de Sikadur 32 gel a edad de 7 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2)	т (Kg/Cm2)	TIPO DE FALLA
1		30°	94.79	41.04	Corte
2	210	37°	97.14	46.69	Corte
3		45°	104.22	-	Compresión
4		30°	100.45	43.49	Corte
5	245	37°	110.35	53.04	Corte
6		45°	117.43	-	Compresión
7		30°	125.43	54.31	Corte
8	280	37°	139.58	-	Compresión
9		45°	143.36	-	Compresión

Tabla 6. 2. Tensión de corte ultima con aplicación de Sikadur 32 gel a edad de 14 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2)	т (Kg/Cm2)	TIPO DE FALLA
1		30°	112.24	48.60	Corte
2	210	37°	120.72	-	Compresión
3		45°	124.02	-	Compresión
4		30°	123.08	53.29	Corte
5	245	37°	126.62	-	Compresión
6		45°	137.23	-	Compresión
7		30°	138.64	60.03	Corte
8	280	37°	153.73	-	Compresión
9		45°	159.86	-	Compresión

Tabla 6. 3. Tensión de corte ultima con aplicación de Sikadur 32 gel a edad de 28 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2)	т (Kg/Cm2)	TIPO DE FALLA
1		30°	130.15	56.36	Corte
2	210	37°	132.04	-	Compresión
3		45°	139.11	69.56	Corte
4		30°	140.06	60.65	Corte
5	245	37°	145.72	70.04	Corte
6		45°	149.25	•	Compresión
7		30°	170.23	73.71	Corte
8	280	37°	177.31	-	Compresión
9		45°	181.08	-	Compresión

6.3.2 ANALISIS DE LA TENSION DE CORTE ÚLTIMA EN EL PLANO DE LA JUNTA PARA CHEMA EPOX ADHESIVO 32.

Tabla 6. 4. Tensión de corte ultima con aplicación de Chema Epox Adhesivo 32 a edad de 7 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2)	т (Kg/Cm2)	TIPO DE FALLA
1		30°	70.74	30.63	Corte
2	210	37°	80.16	38.53	Corte
3		45°	89.60	44.80	Corte
4		30°	75.69	32.77	Corte
5	245	37°	80.64	38.76	Corte
6		45°	93.38	46.69	Corte
7		30°	86.77	37.57	Corte
8	280	37°	91.96	44.20	Corte
9		45°	109.87	54.94	Corte

Tabla 6. 5. Tensión de corte ultima con aplicación de Chema Epox Adhesivo 32 a edad de 14 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2)	T (Kg/Cm2)	TIPO DE FALLA
1		30°	87.24	37.78	Corte
2	210	37°	99.97	48.05	Corte
3		45°	116.01	58.01	Corte
4		30°	91.25	39.51	Corte
5	245	37°	97.61	46.91	Corte
6		45°	103.28	51.64	Corte
7		30°	100.91	43.70	Corte
8	280	37°	110.35	53.04	Corte
9		45°	124.02	62.01	Corte

Tabla 6. 6. Tensión de corte ultima con aplicación de Chema Epox Adhesivo 32 a edad de 28 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2)	T (Kg/Cm2)	TIPO DE FALLA
1		30°	100.44	43.49	Corte
2	210	37°	106.10	51.00	Corte
3		45°	143.36	•	Compresión
4		30°	108.94	47.17	Corte
5	245	37°	117.43	56.44	Corte
6		45°	152.08	•	Compresión
7		30°	110.35	47.78	Corte
8	280	37°	119.78	57.57	Corte
9		45°	166.47	83.23	Corte

6.3.3 ANÁLISIS DE LA TENSIÓN DE CORTE ÚLTIMA EN EL PLANO DE LA JUNTA PARA ZETA POX O UNIVERSAL.

Tabla 6. 7. Tensión de corte última con aplicación de Zeta Pox o Universal a edad de 7 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2)	т (Kg/Cm2)	TIPO DE FALLA
1		30°	97.62	42.27	Corte
2	210	37°	108.93	52.36	Corte
3		45°	121.66	60.83	Corte
4		30°	101.86	44.10	Corte
5	245	37°	113.89	54.74	Corte
6		45°	140.77	70.38	Corte
7		30°	125.44	54.32	Corte
8	280	37°	132.98	63.92	Corte
9		45°	154.67	77.34	Corte

Tabla 6. 8. Tensión de corte última con aplicación de Zeta Pox o Universal a edad de 14 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2)	т (Kg/Cm2)	TIPO DE FALLA
1		30°	111.77	48.40	Corte
2	210	37°	121.19	58.25	Corte
3		45°	140.06	-	Compresión
4		30°	119.55	51.76	Corte
5	245	37°	128.74	-	Compresión
6		45°	155.62	77.81	Corte
7		30°	132.98	57.58	Corte
8	280	37°	147.60	70.94	Corte
9		45°	165.52	82.76	Corte

Tabla 6. 9. Tensión de corte última con aplicación de Zeta Pox o Universal a edad de 28 días del concreto nuevo.

TESTIGO	F'C (Kg/Cm2) DE DISEÑO	ANGULO DE CORTE	F'C (Kg/Cm2)	т (Kg/Cm2)	TIPO DE FALLA
1		30°	122.14	52.89	Corte
2	210	37°	131.57	63.23	Corte
3		45°	147.60	73.80	Corte
4		30°	132.99	57.58	Corte
5	245	37°	138.64	66.63	Corte
6		45°	164.82	82.41	Corte
7		30°	144.77	62.69	Corte
8	280	37°	177.31	85.22	Corte
9		45°	183.91	91.96	Corte

6.4 FACTOR DE RELACIÓN DE RESISTENCIA SEGÚN MÉTODO DE RECONSTITUCIÓN.

6.4.1 FACTOR DE RELACIÓN DE RESISTENCIA A LA COMPRESIÓN PARA SIKADUR 32 GEL.

Tabla 6. 10. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 210 kg/cm2.

PROBETA EXPERIMENTAL			PROBETA DE	FACTOR
EDAD JUNTA (días)	ANGULO DE CORTE	F'C (Kg/Cm2)	CONTROL F'C (Kg/Cm2)	DE RELACIÓN
7		94.79	118.84	0.80
14	30°	112.24	155.62	0.72
28		130.15	223.52	0.58
7		97.14	118.84	0.82
14	37°	120.72	155.62	0.78
28		132.04	223.52	0.59
7		104.22	118.84	0.88
14	45°	124.02	155.62	0.80
28		139.11	223.52	0.62

Tabla 6. 11. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 245 kg/cm2.

PROB	PROBETA EXPERIMENTAL			FACTOR
EDAD JUNTA (días)	ANGULO DE CORTE	F'C (Kg/Cm2)	PROBETA DE CONTROL F'C (Kg/Cm2)	FACTOR DE RELACIÓN
7		100.45	140.77	0.71
14	30°	123.08	195.23	0.63
28		140.06	249.70	0.56
7		110.35	140.77	0.78
14	37°	126.62	195.23	0.65
28		149.25	249.70	0.60
7	_	117.43	140.77	0.83
14	45°	137.23	195.23	0.70
28		149.25	249.70	0.60

Tabla 6. 12. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Sikadur 32 gel para f'c = 280 kg/cm2.

PROB	PROBETA EXPERIMENTAL			FACTOR
EDAD JUNTA (días)	ANGULO DE CORTE	F'C (Kg/Cm2)	PROBETA DE CONTROL F'C (Kg/Cm2)	FACTOR DE RELACIÓN
7		125.43	176.13	0.71
14	30°	138.64	221.40	0.63
28		170.23	304.87	0.56
7		139.58	176.13	0.79
14	37°	153.73	221.40	0.69
28		177.31	304.87	0.58
7		143.36	176.13	0.81
14	45°	159.86	221.40	0.72
28		181.08	304.87	0.59

6.4.2 FACTOR DE RELACIÓN DE RESISTENCIA A LA COMPRESIÓN PARA CHEMA EPOX ADHESIVO 32.

Tabla 6. 13. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Chema Epox Adhesivo32 para f'c = 210 kg/cm2.

PROBE [*]	TA EXPERIM	/IENTAL	PROBETA DE	FACTOR	
EDAD JUNTA (días)	ANGULO DE CORTE	F'C (Kg/Cm2)	CONTROL F'C (Kg/Cm2)	DE RELACIÓN	
7		70.74	118.84	0.60	
14	30°	87.24	155.62	0.56	
28		100.44	223.52	0.45	
7		80.16	118.84	0.67	
14	37°	99.97	155.62	0.64	
28		106.10	223.52	0.47	
7		89.60	118.84	0.75	
14	45°	116.01	155.62	0.75	
28		143.36	223.52	0.64	

Tabla 6. 14. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Chema Epox Adhesivo32 para f'c = 245 kg/cm2.

PROBE [*]	PROBETA EXPERIMENTAL			FACTOR	
EDAD JUNTA (días)	ANGULO DE CORTE	F'C (Kg/Cm2)	PROBETA DE CONTROL F'C (Kg/Cm2)	FACTOR DE RELACIÓN	
7		75.69	140.77	0.54	
14	30°	91.25	195.23	0.47	
28		108.94	249.70	0.44	
7		80.64	140.77	0.57	
14	37°	97.61	195.23	0.50	
28		152.08	249.70	0.61	
7		93.38	140.77	0.66	
14	45°	103.28	195.23	0.53	
28		152.08	249.70	0.61	

Tabla 6. 15. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Chema Epox Adhesivo32 para f'c = 280 kg/cm2.

PROBE [*]	PROBETA EXPERIMENTAL			FACTOR	
EDAD JUNTA (días)	ANGULO DE CORTE	F'C (Kg/Cm2)	PROBETA DE CONTROL F'C (Kg/Cm2)	FACTOR DE RELACIÓN	
7		86.77	176.13	0.49	
14	30°	100.91	221.40	0.46	
28		110.35	304.87	0.36	
7		91.96	176.13	0.52	
14	37°	110.35	221.40	0.50	
28		119.78	304.87	0.39	
7		109.87	176.13	0.62	
14	45°	124.02	221.40	0.56	
28		166.47	304.87	0.55	

6.4.3 FACTOR DE RELACIÓN DE RESISTENCIA A LA COMPRESIÓN PARA ZETA POX O UNIVERSAL.

Tabla 6. 16. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 210 kg/cm2.

PROBE	TA EXPERIM	IENTAL	PROBETA DE	FACTOR
EDAD JUNTA (días)	ANGULO DE CORTE	F'C (Kg/Cm2)	CONTROL	
7		97.62	118.84	0.82
14	30°	140.06	155.62	0.90
28		132.99	223.52	0.59
7		108.93	118.84	0.92
14	37°	119.55	155.62	0.77
28		138.64	223.52	0.62
7		121.66	118.84	1.02
14	45°	128.74	155.62	0.83
28		147.60	223.52	0.66

Tabla 6. 17. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 245 kg/cm2.

PROBE	ETA EXPERIM	IENTAL		EACTOD	
EDAD JUNTA (días)	ANGULO DE CORTE	F'C (Kg/Cm2)	PROBETA DE CONTROL F'C (Kg/Cm2)	FACTOR DE RELACIÓN	
7		108.93	140.77	0.77	
14	30°	119.55	195.23	0.61	
28		138.64	249.70	0.56	
7		121.66	140.77	0.86	
14	37°	128.74	195.23	0.66	
28		144.77	249.70	0.58	
7		140.77	140.77	1.00	
14	45°	155.62	195.23	0.80	
28		164.82	249.70	0.66	

Tabla 6. 18. Comparación de resistencia la compresión encontrando factor de relación entre cilindros de control y cilindros unidos por Zeta Pox o Universal para f'c = 280 kg/cm2.

PROBE	PROBETA EXPERIMENTAL			FACTOR		
EDAD JUNTA (días)	ANGULO DE CORTE	F'C (Kg/Cm2) PROBETA DE CONTROL F'C (Kg/Cm2)		E'C (Ka/Cm2) CONTROL		FACTOR DE RELACIÓN
7		125.44	176.13	0.71		
14	30°	132.98	221.40	0.60		
28		144.77	304.87	0.47		
7		132.98	176.13	0.76		
14	37°	147.60	221.40	0.67		
28		177.31	304.87	0.58		
7		154.67	176.13	0.88		
14	45°	165.52	221.40	0.75		
28		183.91	304.87	0.60		

6.5 FACTOR DE RELACIÓN DE RESISTENCIA A FLEXIÓN DE VIGAS SIMPLES UNIDAS POR EPOXICO ADHERENTE.

Tabla 6. 19. Comparación de resistencia a flexión encontrando factor de relación entre vigas de control y vigas unidas por epóxico adherente para f'c = 210 kg/cm2.

	PROBETA		FACTOR		
EDAD (días)	ANGULO DE CORTE	DE EPOXICO MR		PROBETA DE CONTROL MR (Kg/Cm2)	DE RELACIÓN
28		Chema epox	13.33	28.98	0.46
28	45°	Zeta pox	21.48	28.98	0.74
28		sikadur 32	27.41	28.98	0.95

6.6 FACTOR DE RELACIÓN DE RESISTENCIA A COMPRESIÓN SIMULANDO PROCESO DE CONSTRUCCIÓN EN OBRA

Tabla 6. 20. Comparación de resistencia a compresión encontrando factor de relación entre probetas de control y probetas experimentales para f'c = 210 kg/cm2.

PROBETA EXPERIMENTAL				PROBETA DE	FACTOR	
TRATAMIENTO UTILIZADO	EDAD DE JUNTA	F'C (Kg/Cm2)	F'C (Kg/Cm2) PROMEDIO	CONTROL F'C (Kg/Cm2)	DE RELACIÓN	
	38	242.86				
Sikadur 32	36	242.86	226.35	223.52	1.01	
	34	193.34				
	38	264.08				
Chema epox 32	36	207.96	218.81	223.52	0.98	
	34	184.38				
	37	240.50				
Zeta pox	35	236.25	218.33	223.52	0.98	
	33	178.25				
	38	212.21				
Sin Epoxico	36	219.28	208.43	223.52	0.93	
	34	193.82				

CAPITULO VII CONCLUSIONES Y RECOMENDACIONES

7.1 CONCLUSIONES

En los resultados se observó que aplicando el método de reconstitución la resistencia a la compresión de las probetas unidas por adhesivos es menor a la resistencia de diseño. Además los factores de relación de resistencia a la compresión a edad de 28 días del concreto nuevo (edad de junta) variaron entre 0.36 a 0.66.

Los valores más altos de resistencia a la compresión usando el método de reconstitución se obtuvieron en probetas cuya junta fría se unieron por los adhesivos Sikadur 32 gel y Zeta Pox con factores de relación de 0.60 y 0.66 respectivamente. Estos factores de resistencia a la compresión se obtuvieron a edad de 28 días del concreto nuevo y con la inclinación de 45° del plano de unión.

La mayor cantidad de probetas experimentales elaboradas mediante el método de reconstitución, que se ensayaron a edades de 7, 14 y 28 días fallaron por corte (deslizamiento del concreto en el plano de contacto), evidenciando la inadecuada adhesión entre concretos. Además se obtuvo un mayor desempeño de los adhesivos para planos de unión de 45° con respecto a la generatriz.

Usando el método de simulación de proceso en obra las probetas experimentales unidas mediante sikadur 32 tuvieron un mayor desempeño en adhesión, estas llegaron a tener aproximadamente la misma resistencia a la compresión de las probetas de control con un factor de relación de 1.01, además según resultados se evidencia que Chema epox 32 y Zeta pox mejoraron la junta de unión, sin embargo obtuvieron resistencia a la compresión menores a la resistencia de la probetas de control con un factor de relación de 0.98. Estos factores de relación se obtuvieron al realizar la comparación de probetas unidas mediante junta inclinada 45° y probetas de concreto monolítico.

7.2 RECOMENDACIONES

Al momento de ejecutar juntas frías de concreto se recomienda lo siguiente:

Aplicar el tratamiento de la superficie de contacto asegurando una rugosidad de superficie adecuada, además de una buena limpieza y aplicación del epóxico adherente siguiendo de manera rigurosa las indicaciones del fabricante del producto tanto en dosificación, colocación y almacenamiento, se debe vibrar cuidadosamente el concreto de la segunda etapa para no tocar la superficie de contacto de tal modo que no queden zonas sin epóxico adherente, para asegurar la correcta transferencia de esfuerzos a través de la junta fría de concreto.

Si bien es cierto en el mercado existen epóxicos adherentes económicos, debe elegirse el adhesivo de mejor calidad para prevenir futuros problemas estructurales; por lo tanto para una mejor calidad de adhesión se recomienda el adhesivo Sikadur 32 gel sobre el Zeta Pox o Chema Epox Adhesivo 32, según resultados obtenidos.

7.3 LINEAS FUTURAS DE INVESTIGACIÓN

Este trabajo de investigación ha dejado líneas abiertas para posibles investigaciones futuras. En este apartado se presentan algunas líneas de investigación que pueden ser objeto de interés:

En relación a la evaluación de juntas al unir concreto antiguo y concreto nuevo, se puede adicionar la variación de tipo de cemento y evaluar como este influye en la adhesión.

Otra interesante línea de investigación consiste en evaluar la impermeabilidad de la junta, ya que el concreto es curado con agua para que pueda obtener la resistencia de diseño o se puede dar el caso que el nivel freático es superficial y estar en contacto con el concreto de la estructura.

En este trabajo de investigación se realizó la evaluación de vigas simples a flexión (6 modelos experimentales), el cual podría ser de gran interés continuar su

investigación considerando una mayor cantidad de especímenes experimentales y la inclusión de más variables para la materialización de juntas.

La inclusión del acero debería considerarse en otras investigaciones, ya que los elementos estructurales contienen varillas de acero. Es importante realizar esta investigación y conocer si el acero asume los esfuerzos de tracción al generarse una junta fría.

CAPITULO VIII BIBLIOGRAFIA

7.1 REFERENCIAS BIBLIOGRAFICAS

- ABANTO CASTILLO, F. (1996). "Tecnología del Concreto (Teoría y Problemas)". Lima, Perú.
- ALDANA ORTIZ, R. S. (Agosto de 2008). "Estudio Experimental de Resistencias a Compresión del Hormigón: Correlación entre Resultados de Probetas Cúbicas y Probetas Cilíndricas". *Tesis de Pre Grado*. Santiago de Chile, Chile.
- ARCHILA ORTIZ, G. A. (2007). "Evaluación sobre Adherencia entre Concreto Antiguo y Concreto Nuevo con dos Tipos de Epóxicos". *Tesis de Pre-Grado. Universidad de San Carlos de Guatemala*. Guatemala.
- ASTM C-127 "Método de Ensayo Normalizado para Determinar la Densidad, la Densidad Relativa (Gravedad Específica), y la Absorción de Agregados Gruesos". (s.f.).
- ASTM C-128 "Método de Ensayo Normalizado para Determinar la Densidad, la Densidad Relativa (Gravedad Específica), y la Absorción de Agregados Finos". (s.f.).
- ASTM C-136 "Método de Ensayo Normalizado para la Determinación Granulométrica de Agregados Finos y Gruesos". (s.f.).
- ASTM C-192 "Práctica Normalizada para Preparación y Curado de Especímenes de Concreto para Ensayo de Laboratorio". (s.f.).
- ASTM C-39 "Método de Ensayo Normalizado para Resistencia a la Compresión de Especímenes Cilíndricos de concreto". (s.f.).
- ASTM C-873 "Método de Prueba Estándar para Resistencia a la Compresión de Cilindros de Concreto Colados In Situ en Moldes Cilíndricos". (s.f.).
- ASTM C-881 "Especificaciones para Sistemas de Adherencia para Concreto a Base de Resinas Epóxicas". (s.f.).
- ASTM C-882 "Método Estandar de la Prueba para la Fuerza de Adherencia en los sistemas Epóxicos a Base de Resina Usados con Concreto". (s.f.).
- CASTILLO FERNÁNDEZ, G. A. (2008). "Comportamiento de Juntas de Hormigonado a los Esfuerzos de compresión y Flexotracción en Hormigonrd H30, H25 y H20". *Tesis de Pre-Grado*. Valdivia, Chile.
- FLORENTÍN SALDAÑA, M. M., & GRANADA ROJAS, R. D. (2009). "Patologías Constructivas en los Edificios. Prevenciones y Soluciones". San Lorenzo.
- GARRALÓN JORBA, J. (2010). "Cilindros de 15 x 30 cm para Obtener la Resistencia a la Compresión del Hormigón". Madrid.

- HELENE, P., & PEREIRA, F. (2005). "Manual de Rehabilitación de Estructuras de Hormigón". Sao Paulo.
- IMCYC Instituto Mexicano del Cemento y del Concreto. (2006). "Elaboración de Cilindros de Concreto en el campo".
- IMCYC Instituto Mexicano del Cemento y del Concreto". (2006). "Pruebas de Resistencia a la Compresión del Concreto".
- MARIO MADRID (LOCTITE ESPAÑA). (2009). "Tecnología de la Adhesión". Madrid.
- PRESUPUESTO & CONSTRUCCIÓN. (2011). "Adhesivos en la Construcción y Reparación de Esructuras de Concreto".
- R. DO LAGO, H. P. (2009). "Algunos Ensayos para Evaluación y Control de Adhesivos Epoxi para Hormigon". Escuela Politécnica de la Universidad de Sao Paulo.
- RIVERA, G. (s.f.). "Concreto Simple". Universidad del Cauca.
- RIVVA LOPEZ, E. (2000). "Naturaleza y Materiales del concreto". Lima, Perú.
- RODRIGUEZ AYUSO, J. P. (Agosto de 2012). "Estudio Comparativo del comportamiento Mecánico y Permeabilidad de Juntas Frías de Hormigonado Materializadas con Mallas Metálicas". *Tesis de Pre-Grado*. Santiago de Chile.

ANEXOS

ANEXO A RESULTADOS DE ENSAYOS DE LABORATORIO DE MATERIALES

UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENIERÍA CIVIL DE SISTEMAS Y DE ARQUITECTURA

LABORATORIO DE ENSAYO DE MATERIALES

CONSTANCIA 15-2015 LEM - FICSA

El que suscribe, Jefe del Laboratorio de Ensayo de Materiales de la Facultad de Ingeniería Civil de Sistemas y de Arquitectura de la Universidad Nacional Pedro Ruiz Gallo.

HACE CONSTAR:

Que el Bachiller de la Escuela Profesional de Ingeniería Civil

ZEÑA SANDOVAL JOSÉ ANTONY

Ha realizado sus ensayos, desde el 14 de enero al 31 de agosto del 2015, en este laboratorio.

TIPOS DE ENSAYO	CANTIDAD
 ANALISIS GANULOMÉTRICO POR TAMIZADO 	(02)
CONTENIDO DE HUMEDAD	(02)
PESO ESPECIFICO DE MASA	(02)
 GRADO DE ABSORCIÓN 	(02)
PESO UNITARIO SUELTO	(02)
PESO UNITARIO VARILLADO	(02)
 ENSAYO DE RESISTENCIA A LA COMPRESIÓN 	(231)
ENSAYO DE RESISTENCIA A LA FLEXIÓN	(06)

Para dar cumplimiento a un capítulo de su proyecto de Tesis "RESISTENCIA A LA COMPRESION DE CONCRETOS CON EPOXICOS ADHERENTES.

Se expide la presente constancia, a solicitud del interesado para los fines que estime conveniente.

Lambayeque 12 de octubre del 2015

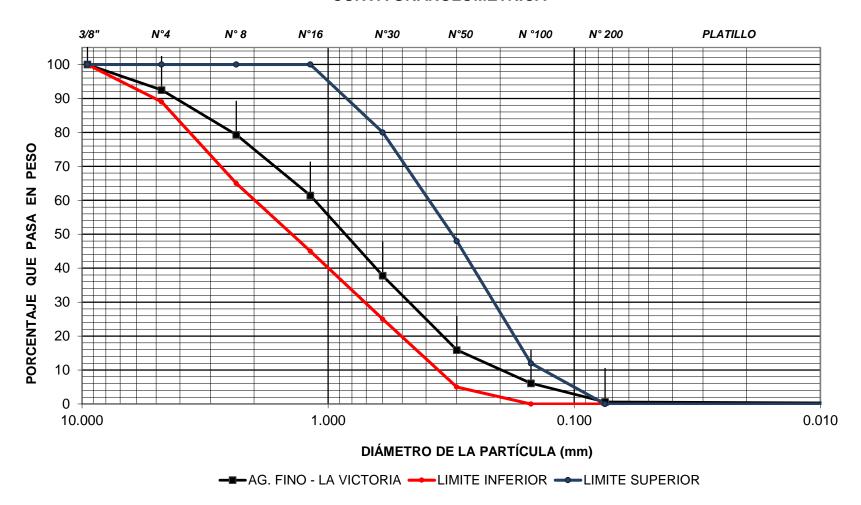
CARLOS MARTINEZ SANTOS TECNICO - LEM

RPBR/cms/mbc

OCIO DEL PILAR BLAS REBAZA JEFE – LEM - FICSA

Pabellón FICSA - Ciudad Universitaria Calle Juan XXIII N° 391

E-mail: lem_ficsa@yahoo.com Lambayeque - Perú


1. Análisis Granulométrico del Agregado fino (Cantera la Victoria)

ANÁLISIS GRANULOMÉTRICO

MUESTRA		M - 1					
TIPO DE MA	TERIAL	ARENA FINA					
P. ORIGINAL	-	1000 g					
PERDIDA PO LAVADO)R	0					
P. TAMIZADO)			1000 g			
				PESO			
PULG.	mm.	RETENIDO (gr)	% RETENIDO	% RETENIDO ACUMULADO	% PASA	LIMITE INFERIOR	LIMITE SUPERIOR
3"	75.00						
2"	50.00						
1 1/2"	38.00						
1"	25.00						
3/4"	19.00						
1/2"	12.50						
3/8"	9.50	0.0	0.0	0.0	100.0	100.0	100.0
N° 4	4.75	75.0	7.5	7.5	92.5	89.0	100.0
N° 8	2.36	132.0	13.2	20.7	79.3	65.0	100.0
N° 16	1.18	179.0	17.9	38.6	61.4	45.0	100.0
N° 30	0.60	236.0	23.6	62.2	37.8	25.0	80.0
N° 50	0.30	219.0	21.9	84.1	15.9	5.0	48.0
N° 100	0.15	98.0	9.8	93.9	6.1	0.0	12.0
N° 200	0.08	55.0	5.5	99.4	0.6		
PLATILLO		6.0	0.6	100.0	0.0		
SUMATORIA		1000					
MODULO DE	FINEZA	3.070					

2. Curva Granulométrica del Agregado Fino (Cantera La Victoria)

CURVA GRANULOMÉTRICA

3. Análisis Granulométrico del Agregado Grueso (Cantera Tres Tomas)

ANÁLISIS GRANULOMÉTRICO

MUESTRA		M - 2					
TIPO DE MA	TERIAL	PIEDRA DE 1"					
P. ORIGINAL	•		4000 g				
PERDIDA PO)R	0					
P. TAMIZADO)			4000 g			
				PESO			
PULG.	mm.	RETENIDO (gr)	% RETENIDO	% RETENIDO ACUMULADO	% PASA	LIMITE INFERIOR	LIMITE SUPERIOR
3"	75.00	0.000	0.000	0.000	100.000	100.000	100.000
2"	50.00	0.000	0.000	0.000	100.000	100.000	100.000
1 1/2"	38.00	0.000	0.000	0.000	100.000	100.000	100.000
1"	25.00	198.000	4.950	4.950	95.050	90.000	100.000
3/4"	19.00	1790.000	44.750	49.700	50.300	40.000	85.000
1/2"	12.50	1490.000	37.250	86.950	13.050	10.000	40.000
3/8"	9.50	521.000	13.025	99.975	0.025	0.000	15.000
N° 4	4.75	1.000	0.025	100.000	0.000	0.000	5.000
N° 8	2.36		0.000	100.000	0.000	0.000	0.000
N° 16	1.18		0.000	100.000	0.000	0.000	0.000
N° 30	0.60		0.000	100.000	0.000		
N° 50	0.30		0.000	100.000	0.000		
N° 100	0.15		0.000	100.000	0.000		
N° 200	0.08	0.000 100.000 0.000					
PLATILLO		0.000	0.000	100.000	0.000		
SUMATORIA		4000.000	100.000				

Tamaño Máximo del Agregado Grueso: 1 1/2"

Tamaño Máximo Nominal del Agregado Grueso: 1"

4. Curva Granulométrica del Agregado Grueso (Cantera Tres Tomas)

CURVA GRANULOMÉTRICA

5. Peso Específico de masa y Grado de Absorción del Agregado Fino

PESO ESPECIFICO	DE MASA – AGREGADO FINO				
DATOS	RESULTADOS				
Peso de la muestra seca al horno(Wo)	(Peso Deposito + Muestra Seca) - Peso Deposito	497.00 g			
Peso o volumen del frasco volumétrico (V)	500.00 g				
Peso o volumen Del agua añadida al frasco (Va)	(Peso Matraz + Muestra + Agua) – 295.00 Peso Matraz – Peso Muestra				
$PEM (AF) = \frac{Wo}{(V - Va)}$	$\frac{497}{500 - 295}$	2.424			
GRADO DE ABSO	PRCION – AGREGADO FINO				
$ABS = \frac{500 - Wo}{Wo}$	$\frac{500 - 497}{497} * 100$	0.604			

6. Peso Específico de masa y Grado de Absorción del Agregado Grueso.

PESO ESPECIFICO DE MASA - AGREGADO GRUESO					
A= P.M. SECA	5000.00 g				
B= P.M.S.S. SECA	5021.00 g				
C= P.M.SUMERGIDA	3165.00 g				
$PEM(A.G) = \frac{A}{B-C}$	5000 5021 – 3165	2.694			
GRADO DE ABSORCI	RCION – AGREGADO GRUESO				
$Abs(\%) = \frac{B - A}{A} \times 100$	<u>5021 - 5000</u> 5000	0.42			

7. Contenido de humedad del Agregado Fino y Agregado Grueso

CONTENIDO DE HUMEDAD					
MUESTRA AG. FINO AG. GRUES					
1 Peso de Deposito + muestra húmeda	3821.00	6591.00			
2 Peso de Deposito + muestra seca	3803.00	6583.00			
3 Peso del Agua (1) - (2)	18	8.00			
4 Peso Depósito (gr)	541.00	540.00			
5 Peso de Muestra seca	3262.00	6043.00			
6Contenido de humedad % (3)/(5)*100	0.552	0.132			

8. Peso Específico Unitario Suelto del Agregado Fino y Agregado Grueso

PESO ESPECIFICO UNITARIO SUELTO						
MUESTRA	AGRI	EGADO I	INO	AGREC	SADO GI	RUESO
Peso muestra + molde	7135	7138	7140	11902	11900	11910
	7145	7145 7142		11905	11908	
1. Peso Promedio	7140.0			11905.0		
2. Peso del molde	5485			8826		
3. Peso de la muestra	1655.0			3079.0		
4. Volumen del molde	941		941 2160		2160	
PESO VOLUMETRICO SUELTO	1.759 1.425					

9. Peso Específico Unitario Varillado del Agregado Fino y Agregado Grueso

PESO UNITARIO VARILLADO							
MUESTRA	AGREGADO FINO		AGREGADO FINO		AGRE	GADO GR	UESO
Peso muestra + molde	7190	7196	7189	12110	12100	12108	
	7195	7180		12107	12105		
1. Peso Promedio	7190.0		12106.0				
2. Peso del molde	5485		8826				
3. Peso de la muestra	1705.0		3280.0				
4. Volumen del molde	941		2160				
PESO UNITARIO VARILLADO	1.812			1.519			

10. Diseños de Mezclas para Resistencia 210 , 245 y 280 kg/cm2

DISEÑO DE MEZCLAS RESISTENCIA 210 kg/cm2

	DISENO DE MEZ	CLAS RI	ESISTENCIA	210 kg/cm2		
A REQUE	RIMIENTOS					
		10 kg/cm2				
	nto Portland Tipo: Extra Forte	_				
Agreg	•	5 100				
/ tgrog		s Tomas (F	erreñafe)			
		Victoria (Pa	·			
Carac	terísticas :	violona (i a	ARENA		PIEDRA	
	dad Natural		0.552	%	0.132	%
Absor			0.604	%	0.420	%
	Específico de Masa		2.424		2.694	, ,
	o de Fineza		3.07			
Tamaí	ño Max. Nominal del A. Grueso				1"	
Peso I	Jnitario Suelto Seco		1.759	gr/cm3	1.425	gr/cm3
Peso l	Jnitario Varillado		1.812	gr/cm3	1.519	gr/cm3
B. DOSIFIC						
1	Selección de la relación Agua - Cem	ento (A/C)				
	Para lograr una resist. Promedio de:		210	+ 84 =	294 kg/cr	n2
	se requiere una relación A/C =		0.558			
	Luego la relación A/C de diseño es :		0.56			
2	Estimación del agua de mezclado y	contenido d			_!	4.5.0/
2	Para un asentamiento de 3 a 4" =		193 litros/m3		aire :	1.5 %
3	Contenido de Cemento 193 / 0	.560 =	345 kg	Aprox	, 012 B	olsas/m3
4	Estimación del contenido de Agrega		343 kg	Apiox	. 0.12 D	01505/1113
٦.	0.65 m3 x		kg/m3 =	987 kg		
5	Estimación del contenido de Agrega		g,e	55. Ng		
	Volumen de Agua			:	= 0.193	m3
	Volumen sólido de cemento :		345	/ 3110 :	= 0.111	m3
	Volumen sólido de Agreg. Grueso :		987	/ 2694 :	= 0.366	m3
	Volumen de aire			:	= 0.015	m3
					0.685	 m3
	Volumen sólido de arena requerido :		1	- 0.685 :	= 0.315	m3
			0.315	x 2424 :	= 763.56	kg
6	Resumen de Materiales por Metro C	úbico	400 11			
	Agua (Neta de Mezclado)	=	193 litr			
	Cemento	=	345.00	-		
	Agregado Grueso	=	987.35	-		
	Agregado Fino	=	763.56	кд		
7	Ajuste por humedad del agregado					
	Por humedad total (pesos ajustados)				
	Agreg. Grueso	987.35 (1 + 0.13 /	100) =	988.65	kg
	Agreg. Fino	763.56 (1 + 0.55 /	100) =	767.77	kg
	Agua para ser añadida por correcció	n por absor	ción			
	Agregado Grueso	987 (0.132 - 0.42)	/ 100 =	-2.84	kg
	Agregado Fino	764 (0.552 - 0.604)	/ 100 =	-0.4	_ kg
					2.24	l.a

$$193 - (-3.24) = 196.24$$

8.- Resumen

Cemento	=	345 kg
Agregado Fino (Húmedo)	=	768 kg
Agregado Grueso (Húmedo)	=	989 kg
Agua Efectiva (Total de Mezclado)	=	196 litros

DOSIFICACION EN PESO

1 : 2.23 : 2.87 / 24.14 litros / bolsa	
--	--

Relación agua - cemento de diseño : 193 / 345 = 0.56 Relación agua - cemento efectiva : 196 / 345 = 0.57

Se tiene una dosificación en peso, ya corregida por humedad del agregado, de

1 : 2.23	: 2.8	37 / 24.14 litros	/ bolsa
----------	-------	-------------------	---------

Se desea conocer la dosificación en volumen equivalente.

I.- MATERIALES

Características:	ARENA		PIEDRA	
Humedad Natural	0.552	%	0.132	%
Peso Unitario Suelto Seco	1.76	ar/cm3	1.43	ar/cm3

II.- CANTIDAD DE MATERIALES POR TANDA

A partir de la relación en peso para valores de obra, o sea ya corregidos por humedad del agregado, se puede determinar la cantidad de materiales necesaria para preparar una tanda de concreto en base a un saco de cemento :

Cemento	1	х	42.5	=	42.5	kg/bolsa
Agua efectiva					24.14	Lts/bolsa
Agregado fino húmedo	2.23	Х	42.5	=	94.78	kg/bolsa
Agregado grueso húmedo	2.87	Х	42.5	=	121.98	kg/bolsa

III.- PESOS UNITARIOS SUELTOS HÚMEDOS DEL AGREGADO

Como se va a convertir una dosificación de obra, o sea ya corregidos por humedad del agregado, es necesario determinar los pesos unitarios húmedos de los Agreg. Fino y Agreg. Grueso, para ello multiplicar el peso unitario suelto seco de cada uno de los agregados por el contenido de humedad del mismo.

Peso unitario del:

Agregado fino húmedo : $1759 \times (1 + 0.55) = 2729.97 \times \text{Kg/m3}$ Agregado grueso húmedo : $1425 \times (1 + 0.13) = 1613.10 \times \text{Kg/m3}$

IV.- PESO POR PIE CUBICO DEL AGREGADO

Conocidos los pesos unitarios sueltos húmedos de los agregados, y sabiendo que un M3 es igual a 35 pie3, se deberá dividir el primero entre el segundo para obtener el peso por pie3 en cada uno de los agregados.

Peso en pie3:

Del Agregado fino	2730	/	35	=	78.00 Kg/pie3
Del Agregado grueso	1613	/	35	=	46.09 Kg/pie3
De la bolsa de cemento					42.50 Kg/pie3

V.- DOSIFICACIÓN EN VOLUMEN

Conocidos los pesos por pie3 de los diferentes materiales en la mezcla, bastará dividir los pesos de cada uno de los materiales en la tanda de un saco entre los pesos por pie3 para obtener el número de pie3 necesarios para preparar una tanda de un saco.

Dosificación en Volumen

 Cemento
 42.50 / 42.50 = 1

 Agregado Fino (Húmedo)
 94.78 / 78.00 = 1.22

 Agregado Grueso (Húmedo)
 121.98 / 46.09 = 2.65

1 : 1.22 : 2.65 / 24.14 litros / bolsa

RESULTADOS DEL DISEÑO DE MEZCLA DE CONCRETO

Cantera de la que proceden los ARENA GRUESA DE LA CANTERA LA VICTORIA agregados : PIEDRA CHANCADA DE LA CANTAERA TRES TOMAS

Se usarán los resultados en tesis : RESISTENCIA A LA COMPRESIÓN DE CONCRETOS CON

EPOXICO ADHERENTE

MATERIALES : ARENA GRUESA Y PIEDRA CHANCADA TIPO DE CEMENTO : PACASMAYO TIPO "EXTRA FORTE"

AGUA : ------ADITIVOS : ------

ESPECIFICACIONES : PARA UNA RESISTENCIA DE 210 kg/cm2

CARACTERISTICAS FISICAS DE LOS AGREGADOS

PROPIEDAD	ARENA	PIEDRA
HUMEDAD NATURAL	0.55 %	0.13 %
ABSORCIÓN	0.60 %	0.42 %
PESO ESPECÍFICO DE MASA	2.424	2.694
PESO UNITARIO VARILLADO	3.07 gr/cm3	
MÓDULO DE FINEZA		1"
TAMAÑO MÁXIMO NOMINAL DEL AGREGADO	1.76 gr/cm3	1.43 gr/cm3

DOSIFICACION

RELACION AGUA/CEMENTO : 0.56 SLUMP : 3 " A 4" CONTENIDO DE AIRE : 1.5 % TIPO DE ELEMENTO : VARIAS

MATERIAL	PESO	PROPORCION EN PESO EN EL MISMO ORDEN	PROPORCION EN VOLUMEN
CEMENTO ARENA PIEDRA AGUA	345 kg 768 kg 989 kg 196 litros	1 : 2.23 : 2.87 + 24.14 lts / bolsa	1 : 1.22 : 2.65 + 24.14 lts / bolsa

DISEÑO DE MEZCLAS RESISTENCIA 245 kg/cm2

A. REQUERIMIENTOS

Resistencia Especificada: f'c = 245 kg/cm2 Cemento Portland Tipo: Extra Forte Ico

Agregados:

Tres Tomas (Ferreñafe) Piedra Cantera: La Victoria (Patapo) Arena Cantera:

Características :	ARENA		PIEDRA	
Humedad Natural	0.552	%	0.132	%
Absorción	0.604	%	0.420	%
Peso Específico de Masa	2.424		2.694	
Módulo de Fineza	3.07			
Tamaño Max. Nominal del A. Grueso			1"	
Peso Unitario Suelto Seco	1.759	gr/cm3	1.425	gr/cm3
Peso Unitario Varillado	1.812	ar/cm3	1.519	ar/cm3

Peso Unitario Varillado

B. DOSIFICACIÓN

1.-Selección de la relación Agua - Cemento (A/C)

> Para lograr una resist. Promedio de: 245 84 329 kg/cm2

se requiere una relación A/C = 0.509 Luego la relación A/C de diseño es: 0.50

2.-Estimación del agua de mezclado y contenido de aire

Para un asentamiento de 3 a 4" = 193 litros/m3 aire: 1.5 %

3.-Contenido de Cemento

193 / 0.500 = 386 kg Aprox. 9.08 Bolsas/m3

Estimación del contenido de Agregado Grueso 4.-

m3

0.65 1519 kg/m3 =987 kg

Estimación del contenido de Agregado Fino 5.-

Volumen de Agua				=	0.193	m3
Volumen sólido de cemento :	386	/	3110	=	0.124	m3
Volumen sólido de Agreg. Grueso :	987	/	2694	=	0.366	m3
Volumen de aire				= _	0.015	_ m3
					0.608	m3

Volumen sólido de arena requerido : 0.698 0.302 m3 0.302 x 2424 732.048

6.-Resumen de Materiales por Metro Cúbico

> Agua (Neta de Mezclado) 193 litros Cemento 386.00 kg = Agregado Grueso 987.35 kg Agregado Fino 732.05 kg

7.-Ajuste por humedad del agregado

Por humedad total (pesos ajustados)

Agreg. Grueso 100) =kg 987.35 (1 + 0.13 / 988.65 Agreg. Fino 732.05 (1 + 0.55 / 100) = 736.09 kg Agua para ser añadida por corrección por absorción

Agregado Grueso 987 (0.132 - 0.42) / 100 = -2.84 kg Agregado Fino 732 (0.552 - 0.604) / 100 = -0.38 kg -3.22 kg

> 193 - (-3.22) = 196.22

8.- Resumen

Cemento	=	386 kg
Agregado Fino (Húmedo)	=	736 kg
Agregado Grueso (Húmedo)	=	989 kg
Agua Efectiva (Total de Mezclado)	=	196 litros

DOSIFICACION EN PESO

Relación agua - cemento de diseño : 193 / 386 = 0.5Relacion agua - cemento efectiva : 196 / 386 = 0.51

Se tiene una dosificación en peso, ya corregida por humedad del agregado, de

1	: 1.91 :	2.56 / 21.58 litros	/ bolsa
---	----------	---------------------	---------

Se desea conocer la dosificación en volumen equivalente.

I.- MATERIALES

Características :	ARENA			PIEDRA		
Humedad Natural	0.552	%	0.132	%		
Peso Unitario Suelto Seco	1.76	gr/cm3	1.43	gr/cm3		

II.- CANTIDAD DE MATERIALES POR TANDA

A partir de la relación en peso para valores de obra, o sea ya corregidos por humedad del agregado, se puede determinar la cantidad de materiales necesaria para preparar una tanda de concreto en base a un saco de cemento:

Cemento	1	Х	42.5	= .	42.5	kg/bolsa
Agua efectiva				2	21.58	Lts/bolsa
Agregado fino húmedo	1.91	Х	42.5	= 8	31.18	kg/bolsa
Agregado grueso húmedo	2.56	Х	42.5	= 1	108.8	kg/bolsa

III.- PESOS UNITARIOS SUELTOS HÚMEDOS DEL AGREGADO

Como se va a convertir una dosificación de obra, o sea ya corregidos por humedad del agregado, es necesario determinar los pesos unitarios húmedos de los Agreg. Fino y Agreg. Grueso, para ello multiplicar el peso unitario suelto seco de cada una de los agregados por el contenido de humedad del mismo.

Peso unitario del:

Agregado fino húmedo : $1759 \times (1 + 0.55) = 2729.97 \times \text{Kg/m3}$ Agregado grueso húmedo : $1425 \times (1 + 0.13) = 1613.10 \times \text{Kg/m3}$

IV.- PESO POR PIE CUBICO DEL AGREGADO

Conocidos los pesos unitarios sueltos húmedos de los agregados, y sabiendo que un M3 es igual a 35 pie3, se deberá dividir el primero entre el segundo para obtener el peso por pie3 en cada uno de los agregados.

Peso en pie3:

 Del Agregado fino
 2730 /
 35 =
 78.00 Kg/pie3

 Del Agregado grueso
 1613 /
 35 =
 46.09 Kg/pie3

 De la bolsa de cemento
 42.50 Kg/pie3

V.- DOSIFICACIÓN EN VOLUMEN

Conocidos los pesos por pie3 de los diferentes materiales en la mezcla, bastará dividir los pesos de cada uno de los materiales en la tanda de un saco entre los pesos por pie3 para obtener el número de pie3 necesarios para preparar una tanda de un saco.

Dosificación en Volumen

 Cemento
 42.50 / 42.50 = 1

 Agregado Fino (Húmedo)
 81.18 / 78.00 = 1.04

 Agregado Grueso (Húmedo)
 108.80 / 46.09 = 2.36

1 : 1.04 : 2.36 / 21.58 litros / bolsa

RESULTADOS DEL DISEÑO DE MEZCLA DE CONCRETO

Cantera de la que proceden los agregados :ARENA GRUESA DE LA CANTERA LA VICTORIA
PIEDRA CHANCADA DE LA CANTAERA TRES TOMAS

Se usarán los resultados en tesis : RESISTENCIA A LA COMPRESIÓN DE CONCRETOS CON

EPOXICO ADHERENTE

MATERIALES : ARENA GRUESA Y PIEDRA CHANCADA TIPO DE CEMENTO : PACASMAYO TIPO "EXTRA FORTE"

AGUA : ------ADITIVOS : ------

ESPECIFICACIONES : PARA UNA RESISTENCIA DE 245 kg/cm2

CARACTERISTICAS FISICAS DE LOS AGREGADOS

PROPIEDAD	ARENA	PIEDRA
HUMEDAD NATURAL	0.55 %	0.13 %
ABSORCIÓN	0.60 %	0.42 %
PESO ESPECÍFICO DE MASA	2.424	2.694
PESO UNITARIO VARILLADO	3.07 gr/cm3	
MÓDULO DE FINEZA		1"
TAMAÑO MÁXIMO NOMINAL DEL AGREGADO	1.76 gr/cm3	1.43 gr/cm3

DOSIFICACION

RELACION AGUA/CEMENTO : 0.50
SLUMP : 3 " A 4"
CONTENIDO DE AIRE : 1.5 %
TIPO DE ELEMENTO : VARIAS

MATERIAL	PESO	PROPORCION EN PESO EN EL MISMO ORDEN	PROPORCION EN VOLUMEN
CEMENTO ARENA PIEDRA	386 kg 736 kg 989 kg	1 : 1.91 : 2.56 + 21.58 lts / bolsa	1 : 1.04 : 2.36 + 21.58 lts / bolsa
AGUA	196 litros		

DISEÑO DE MEZCLAS RESISTENCIA 280 kg/cm2

A. REQUERIMIENTOS

Resistencia Especificada: f'c = 280 kg/cm2 Cemento Portland Tipo: Extra Forte Ico

Agregados:

Características ·

Tres Tomas (Ferreñafe) Piedra Cantera: Arena Cantera : La Victoria (Patapo)

Caracteristicas.	ANEINA		FIEDRA	
Humedad Natural	0.552	%	0.132	%
Absorción	0.604	%	0.420	%
Peso Específico de Masa	2.424		2.694	
Módulo de Fineza	3.07			
Tamaño Max. Nominal del A. Grueso			1"	
Peso Unitario Suelto Seco	1.759	gr/cm3	1.425	gr/cm3
Dogo Unitorio Varillado	1 012	ar/om2	1 510	ar/am2

ΔΡΕΝΙΔ

DIEDRA

gr/cm3 Peso Unitario Varillado 1.812 gr/cm3 1.519

B. DOSIFICACIÓN

1.-Selección de la relación Agua - Cemento (A/C)

> Para lograr una resist. Promedio de: 280 84 364 kg/cm2

se requiere una relación A/C = 0.466 Luego la relación A/C de diseño es: 0.46

2.-Estimación del agua de mezclado y contenido de aire

Para un asentamiento de 3 a 4" = 193 litros/m3 aire: 1.5 %

3.-Contenido de Cemento

> 193 / 0.460 = 420 kg Aprox. 9.88 Bolsas/m3

4.-Estimación del contenido de Agregado Grueso

m3

0.65 1519 kg/m3 =987 kg

Estimación del contenido de Agregado Fino 5.-

Volumen de Agua				=	0.193	m3
Volumen sólido de cemento :	420	/	3110	=	0.135	m3
Volumen sólido de Agreg. Grueso :	987	/	2694	=	0.366	m3
Volumen de aire				= _	0.015	_ m3
					0.709	m3

Volumen sólido de arena requerido : 0.709 0.291 1 m3 0.291 x 2424 705.384 kg

6.-Resumen de Materiales por Metro Cúbico

Agua (Neta de Mezclado) 193 litros Cemento 420.00 kg = Agregado Grueso 987.35 kg Agregado Fino 705.38 kg

7.-Ajuste por humedad del agregado

Por humedad total (pesos ajustados)

Agreg. Grueso 987.35 (100) =kg 1 + 0.13 / 988.65 Agreg. Fino 705.38 (1 + 0.55 / 100) = 709.28 kg Agua para ser añadida por corrección por absorción / 100 =

Agregado Grueso 987 (0.132 - 0.42) -2.84 kg Agregado Fino 705 (0.552 - 0.604) / 100 = -0.37 kg -3.21kg

> 193 - (-3.21) =196.21

8.- Resumen

Cemento	=	420 kg
Agregado Fino (Húmedo)	=	709 kg
Agregado Grueso (Húmedo)	=	989 kg
Agua Efectiva (Total de Mezclado)	=	196 litros

DOSIFICACION EN PESO

1		1.69	:	2.35 / 19.83	itros / bolsa
	•		•	/ 10.00 1	11.00 / 20.00

Relación agua - cemento de diseño : 193 / 420 = 0.46 Relación agua - cemento efectiva : 196 / 420 = 0.47

Se tiene una dosificación en peso, ya corregida por humedad del agregado, de

Se desea conocer la dosificación en volumen equivalente.

I.- MATERIALES

Características :	ARENA		PIEDRA	
Humedad Natural	0.552	%	0.132	%
Peso Unitario Suelto Seco	1.76	gr/cm3	1.43	gr/cm3

II.- CANTIDAD DE MATERIALES POR TANDA

A partir de la relación en peso para valores de obra, o sea ya corregidos por humedad del agregado, se puede determinar la cantidad de materiales necesaria para preparar una tanda de concreto en base a un saco de cemento :

Cemento	1	Х	42.5	=	42.5	kg/bolsa
Agua efectiva					19.83	Lts/bolsa
Agregado fino húmedo	1.69	Х	42.5	=	71.83	kg/bolsa
Agregado grueso húmedo	2.35	Х	42.5	=	99.88	kg/bolsa

III.- PESOS UNITARIOS SUELTOS HÚMEDOS DEL AGREGADO

Como se va a convertir una dosificación de obra, o sea ya corregidos por humedad del agregado, es necesario determinar los pesos unitarios húmedos de los Agreg. Fino y Agreg. Grueso, para ello multiplicar el peso unitario suelto seco de cada una de los agregados por el contenido de humedad del mismo.

Peso unitario del:

Agregado fino húmedo : $1759 \times (1 + 0.55) = 2729.97 \times \text{Kg/m3}$ Agregado grueso húmedo : $1425 \times (1 + 0.13) = 1613.10 \times \text{Kg/m3}$

IV.- PESO POR PIE CUBICO DEL AGREGADO

Conocidos los pesos unitarios sueltos húmedos de los agregados, y sabiendo que un M3 es igual a 35 pie3, se deberá dividir el primero entre el segundo para obtener el peso por pie3 en cada uno de los agregados.

Peso en pie3:

 Del Agregado fino
 2730 /
 35 =
 78.00 Kg/pie3

 Del Agregado grueso
 1613 /
 35 =
 46.09 Kg/pie3

 De la bolsa de cemento
 42.50 Kg/pie3

V.- DOSIFICACIÓN EN VOLUMEN

Conocidos los pesos por pie3 de los diferentes materiales en la mezcla, bastará dividir los pesos de cada uno de los materiales en la tanda de un saco entre los pesos por pie3 para obtener el número de pie3 necesarios para preparar una tanda de un saco.

Dosificación en Volumen

 Cemento
 42.50 / 42.50 = 1

 Agregado Fino (Húmedo)
 71.83 / 78.00 = 0.92

 Agregado Grueso (Húmedo)
 99.88 / 46.09 = 2.17

1 : 0.92 : 2.17 / 19.83 litros / bolsa

RESULTADOS DEL DISEÑO DE MEZCLA DE CONCRETO

Cantera de la que proceden los ARENA GRUESA DE LA CANTERA LA VICTORIA piedra de la que proceden los ARENA GRUESA DE LA CANTAERA TRES TOMAS

Se usarán los resultados en tesis : RESISTENCIA A LA COMPRESIÓN DE CONCRETOS CON

EPOXICO ADHERENTE

MATERIALES : ARENA GRUESA Y PIEDRA CHANCADA TIPO DE CEMENTO : PACASMAYO TIPO "EXTRA FORTE"

AGUA : ------ADITIVOS : ------

ESPECIFICACIONES : PARA UNA RESISTENCIA DE 280 kg/cm2

CARACTERISTICAS FISICAS DE LOS AGREGADOS

PROPIEDAD	ARENA	PIEDRA
HUMEDAD NATURAL	0.55 %	0.13 %
ABSORCIÓN	0.60 %	0.42 %
PESO ESPECÍFICO DE MASA	2.424	2.694
PESO UNITARIO VARILLADO	3.07 gr/cm3	
MÓDULO DE FINEZA		1"
TAMAÑO MÁXIMO NOMINAL DEL AGREGADO	1.76 gr/cm3	1.43 gr/cm3

DOSIFICACION

RELACION AGUA/CEMENTO : 0.46
SLUMP : 3 " A 4"
CONTENIDO DE AIRE : 1.5 %
TIPO DE ELEMENTO : VARIAS

MATERIAL	PESO	PROPORCION EN PESO EN EL MISMO ORDEN	PROPORCION EN VOLUMEN
CEMENTO ARENA PIEDRA AGUA	420 kg 709 kg 989 kg 196 litros	1 : 1.69 : 2.35 + 19.83 lts / bolsa	1 : 0.92 : 2.17 + 19.83 lts / bolsa

11. Datos de Ensayos de Rotura de Especímenes Experimentales

	Resistencia a la compresión de diseño f'c = 210 kg/cm2									
CODIGO DE PROBETA	FECHA DE VACEADO	FECHA DE ENSAYO	EDAD DE PROBETA (días)	ANGULO DE CORTE	EPOXICO ADHERENTE	DIAM. (cm)	CARGA DE ROTURA (Kgf)			
04 - 1	02/06/2015	01/07/2015	29	37 °	sikadur 32	15	23500			
04 - 2	02/06/2015	01/07/2015	29	37 °	sikadur 32	15	23000			
05 - 1	02/06/2015	01/07/2015	29	37 °	sikadur 32	15	23500			
05 - 2	02/06/2015	17/06/2015	15	37 °	sikadur 32	15	21500			
06 - 1	02/06/2015	17/06/2015	15	37 °	sikadur 32	15	21500			
06 - 2	02/06/2015	17/06/2015	15	37 °	sikadur 32	15	21000			
08 - 1	03/06/2015	12/06/2015	9	37 °	sikadur 32	15	17000			
08 - 2	03/06/2015	12/06/2015	9	37 °	sikadur 32	15	17500			
09 - 1	01/06/2015	26/06/2015	25	45 °	sikadur 32	15	24500			
09 - 2	01/06/2015	26/06/2015	25	45 °	sikadur 32	15	25000			
10 - 1	03/06/2015	12/06/2015	9	37 °	sikadur 32	15	17000			
10 - 2	18/06/2015	17/07/2015	29	37 °	Chema Epox	15	19000			
11 - 1	18/06/2015	17/07/2015	29	37 °	Chema Epox	15	18500			
11 - 2	18/06/2015	17/07/2015	29	37 °	Chema Epox	15	18750			
12 - 1	19/06/2015	03/07/2015	15	37 °	Chema Epox	15	17500			
12 - 2	19/06/2015	03/07/2015	15	37 °	Chema Epox	15	17500			
14 - 1	19/06/2015	03/07/2015	15	37 °	Chema Epox	15	18000			
14 - 2	20/06/2015	26/06/2015	6	37 °	Chema Epox	15	14000			
15 - 1	20/06/2015	26/06/2015	6	37 °	Chema Epox	15	14500			
15 - 2	20/06/2015	26/06/2015	6	37 °	Chema Epox	15	14000			
16 - 1	25/06/2015	24/07/2015	29	37 °	Zeta Pox	15	23750			
16 - 2	25/06/2015	24/07/2015	29	37 °	Zeta Pox	15	23000			
17 - 1	25/06/2015	24/07/2015	29	37 °	Zeta Pox	15	23000			
17 - 2	26/06/2015	09/07/2015	14	37 °	Zeta Pox	15	21750			
18 - 1	30/06/2015	13/07/2015	13	37 °	Zeta Pox	15	21250			
18 - 2	30/06/2015	13/07/2015	13	37 °	Zeta Pox	15	21250			
20 - 1	30/06/2015	09/07/2015	9	37 °	Zeta Pox	15	19500			
20 - 2	30/06/2015	09/07/2015	9	37 °	Zeta Pox	15	19000			
21 - 1	30/06/2015	09/07/2015	9	37 °	Zeta Pox	15	19250			
22 - 1	31/05/2015	26/06/2015	26	45 °	sikadur 32	15	24250			
22 - 2	31/05/2015	15/06/2015	15	45 °	sikadur 32	15	21750			
23 - 1	31/05/2015	15/06/2015	15	45 °	sikadur 32	15	22000			
23 - 2	01/06/2015	15/06/2015	14	45 °	sikadur 32	15	22000			
24 - 1	01/06/2015	12/06/2015	11	45 °	sikadur 32	15	19250			
24 - 2	01/06/2015	12/06/2015	11	45 °	sikadur 32	15	18000			
25 - 1	01/06/2015	12/06/2015	11	45 °	sikadur 32	15	18000			
25 - 2	19/06/2015	17/07/2015	28	45 °	Chema Epox	15	24250			
26 - 1	19/06/2015	17/07/2015	28	45 °	Chema Epox	15	26750			
26 - 2	19/06/2015	17/07/2015	28	45 °	Chema Epox	15	25000			

Resistencia a la compresión de diseño f'c = 210 kg/cm2									
CODIGO DE PROBETA	FECHA DE VACEADO	FECHA DE ENSAYO	EDAD DE PROBETA (días)	ANGULO DE CORTE	EPOXICO ADHERENTE	DIAM. (cm)	CARGA DE ROTURA (Kgf)		
27 - 1	19/06/2015	03/07/2015	14	45 °	Chema Epox	15	20500		
27 - 2	20/06/2015	03/07/2015	13	45 °	Chema Epox	15	20500		
30 - 1	20/06/2015	03/07/2015	13	45 °	Chema Epox	15	20500		
30 - 2	20/06/2015	26/06/2015	6	45 °	Chema Epox	15	16000		
31 - 1	20/06/2015	26/06/2015	6	45 °	Chema Epox	15	15500		
31 - 2	01/07/2015	09/07/2015	8	45 °	Chema Epox	15	16000		
33 - 1	26/06/2015	23/07/2015	27	45 °	Zeta Pox	15	26000		
33 - 2	26/06/2015	23/07/2015	27	45 °	Zeta Pox	15	25750		
34 - 1	26/06/2015	23/07/2015	27	45 °	Zeta Pox	15	26500		
34 - 2	26/06/2015	09/07/2015	13	45 °	Zeta Pox	15	24250		
35 - 1	26/06/2015	09/07/2015	13	45 °	Zeta Pox	15	26250		
35 - 2	26/06/2015	09/07/2015	13	45 °	Zeta Pox	15	23750		
37 - 1	03/06/2015	01/07/2015	28	30 °	sikadur 32	15	23000		
37 - 2	03/06/2015	01/07/2015	28	30 °	sikadur 32	15	22500		
38 - 1	03/06/2015	01/07/2015	28	30 °	sikadur 32	15	23500		
38 - 2	04/06/2015	20/06/2015	16	30 °	sikadur 32	15	19500		
40 - 1	04/06/2015	20/06/2015	16	30 °	sikadur 32	15	20500		
40 - 2	04/06/2015	20/06/2015	16	30 °	sikadur 32	15	19500		
41 - 1	05/06/2015	12/06/2015	7	30 °	sikadur 32	15	16500		
41 - 2	05/06/2015	12/06/2015	7	30 °	sikadur 32	15	17000		
42 - 1	05/06/2015	12/06/2015	7	30 °	sikadur 32	15	16750		
42 - 2	17/06/2015	15/07/2015	28	30 °	Chema Epox	15	17750		
43 - 1	17/06/2015	15/07/2015	28	30 °	Chema Epox	15	17750		
45 - 1	17/06/2015	15/07/2015	28	30 °	Chema Epox	15	17750		
45 - 2	17/06/2015	01/07/2015	14	30 °	Chema Epox	15	15750		
46 - 1	17/06/2015	01/07/2015	14	30 °	Chema Epox	15	15250		
46 - 2	17/06/2015	01/07/2015	14	30 °	Chema Epox	15	15250		
47 - 1	18/06/2015	26/06/2015	8	30 °	Chema Epox	15	12000		
47 - 2	18/06/2015	26/06/2015	8	30 °	Chema Epox	15	12500		
48 - 1	18/06/2015	26/06/2015	8	30 °	Chema Epox	15	13000		
48 - 2	25/06/2015	23/07/2015	28	30 °	Zeta Pox	15	21000		
49 - 1	25/06/2015	23/07/2015	28	30 °	Zeta Pox	15	21250		
49 - 2	25/06/2015	23/07/2015	28	30 °	Zeta Pox	15	22500		
50 - 1	26/06/2015	09/07/2015	13	30 °	Zeta Pox	15	20000		
50 - 2	26/06/2015	09/07/2015	13	30 °	Zeta Pox	15	19500		
51 - 1	30/06/2015	06/07/2015	6	30 °	Zeta Pox	15	17000		
51 - 2	30/06/2015	06/07/2015	6	30 °	Zeta Pox	15	17500		
69 - 1	30/06/2015	06/07/2015	6	45 °	Zeta Pox	15	21500		
69 - 2	30/06/2015	06/07/2015	6	45 °	Zeta Pox	15	21500		

Resistencia a la compresión de diseño f'c = 245 kg/cm2									
CODIGO DE PROBETA	FECHA DE VACEADO	FECHA DE ENSAYO	EDAD DE PROBETA (días)	ANGULO DE CORTE	EPOXICO ADHERENTE	DIAM. (cm)	CARGA DE ROTURA (Kgf)		
55 - 1	05/06/2015	03/07/2015	28	37 °	sikadur 32	15	26000		
55 - 2	05/06/2015	03/07/2015	28	37 °	sikadur 32	15	25500		
56 - 1	05/06/2015	20/06/2015	14	37 °	sikadur 32	15	22250		
56 - 2	08/06/2015	24/06/2015	16	37 °	sikadur 32	15	22500		
57 - 1	08/06/2015	15/06/2015	7	37 °	sikadur 32	15	19500		
57 - 2	08/06/2015	15/06/2015	7	37 °	sikadur 32	15	19500		
58 - 1	20/06/2015	17/07/2015	27	37 °	Chema Epox	15	20500		
58 - 2	20/06/2015	17/07/2015	27	37 °	Chema Epox	15	21000		
59 - 1	23/06/2015	06/07/2015	13	37 °	Chema Epox	15	17250		
59 - 2	23/06/2015	06/07/2015	13	37 °	Chema Epox	15	17250		
60 - 1	22/06/2015	01/07/2015	9	37 °	Chema Epox	15	14500		
60 - 2	22/06/2015	01/07/2015	9	37 °	Chema Epox	15	14000		
61 - 1	25/06/2015	23/07/2015	28	37 °	Zeta Pox	15	24500		
61 - 2	25/06/2015	23/07/2015	28	37 °	Zeta Pox	15	24500		
62 - 1	27/06/2015	13/07/2015	16	37 °	Zeta Pox	15	22750		
62 - 2	27/06/2015	13/07/2015	16	37 °	Zeta Pox	15	22750		
63 - 1	29/06/2015	06/07/2015	7	37 °	Zeta Pox	15	20000		
63 - 2	29/06/2015	06/07/2015	7	37 °	Zeta Pox	15	20250		
64 - 1	06/06/2015	03/07/2015	27	45 °	sikadur 32	15	26250		
64 - 2	06/06/2015	03/07/2015	27	45 °	sikadur 32	15	26500		
65 - 1	06/06/2015	24/06/2015	18	45 °	sikadur 32	15	24500		
65 - 2	07/06/2015	24/06/2015	17	45 °	sikadur 32	15	24000		
66 - 1	07/06/2015	15/06/2015	8	45 °	sikadur 32	15	21000		
66 - 2	07/06/2015	15/06/2015	8	45 °	sikadur 32	15	20500		
67 - 1	20/06/2015	17/07/2015	27	45 °	Chema Epox	15	27750		
67 - 2	20/06/2015	17/07/2015	27	45 °	Chema Epox	15	26000		
68 - 1	23/06/2015	07/07/2015	14	45 °	Chema Epox	15	18500		
68 - 2	23/06/2015	07/07/2015	14	45 °	Chema Epox	15	18000		
36 - 1	30/06/2015	07/07/2015	7	45 °	Chema Epox	15	16750		
36 - 2	30/06/2015	07/07/2015	7	45 °	Chema Epox	15	16250		
70 - 1	25/06/2015	23/07/2015	28	45 °	Zeta Pox	15	29250		
70 - 2	25/06/2015	23/07/2015	28	45 °	Zeta Pox	15	29000		
71 - 1	27/06/2015	10/07/2015	13	45 °	Zeta Pox	15	27500		
71 - 2	27/06/2015	10/07/2015	13	45 °	Zeta Pox	15	27500		
73 - 1	07/06/2015	06/07/2015	29	30 °	sikadur 32	15	24500		
73 - 2	07/06/2015	06/07/2015	29	30 °	sikadur 32	15	25000		
74 - 1	29/06/2015	06/07/2015	7	45 °	Zeta Pox	15	2500		
74 - 2	29/06/2015	06/07/2015	7	45 °	Zeta Pox	15	24750		
75 - 1	08/06/2015	24/06/2015	16	30 °	sikadur 32	15	21500		

	Resistencia a la compresión de diseño f'c = 245 kg/cm2										
CODIGO DE PROBETA	FECHA DE VACEADO	FECHA DE ENSAYO	EDAD DE PROBETA (días)	ANGULO DE CORTE	EPOXICO ADHERENTE	DIAM. (cm)	CARGA DE ROTURA (Kgf)				
75 - 2	08/06/2015	24/06/2015	16	30 °	sikadur 32	15	22000				
76 - 1	07/06/2015	15/06/2015	8	30 °	sikadur 32	15	18000				
76 - 2	08/06/2015	15/06/2015	7	30 °	sikadur 32	15	17500				
77 - 1	20/06/2015	20/07/2015	30	30 °	Chema Epox	15	19500				
77 - 2	21/06/2015	20/07/2015	29	30 °	Chema Epox	15	19000				
78 - 1	23/06/2015	06/07/2015	13	30 °	Chema Epox	15	16000				
78 - 2	23/06/2015	06/07/2015	13	30 °	Chema Epox	15	16250				
79 - 1	19/06/2015	26/06/2015	7	30 °	Chema Epox	15	13250				
79 - 2	19/06/2015	26/06/2015	7	30 °	Chema Epox	15	13500				
80 - 1	25/06/2015	23/07/2015	28	30 °	Zeta Pox	15	23750				
80 - 2	25/06/2015	23/07/2015	28	30 °	Zeta Pox	15	23250				
81 - 1	27/06/2015	13/07/2015	16	30 °	Zeta Pox	15	21000				
81 - 2	27/06/2015	13/07/2015	16	30 °	Zeta Pox	15	21250				
82 - 1	29/06/2015	07/07/2015	8	30 °	Zeta Pox	15	18250				
82 - 2	29/06/2015	07/07/2015	8	30 °	Zeta Pox	15	17750				

Resistencia a la compresión de diseño f'c = 280 kg/cm2									
CODIGO DE PROBETA	FECHA DE VACEADO	FECHA DE ENSAYO	EDAD DE PROBETA (días)	ANGULO DE CORTE	EPOXICO ADHERENTE	DIAM. (cm)	CARGA DE ROTURA (Kgf)		
88 - 1	12/06/2015	09/07/2015	27	37 °	sikadur 32	15	31500		
88 - 2	12/06/2015	09/07/2015	27	37 °	sikadur 32	15	31000		
89 - 1	12/06/2015	09/07/2015	27	37 °	sikadur 32	15	31500		
89 - 2	12/06/2015	26/06/2015	14	37 °	sikadur 32	15	27000		
90 - 1	12/06/2015	26/06/2015	14	37 °	sikadur 32	15	27500		
90 - 2	13/06/2015	26/06/2015	14	37 °	sikadur 32	15	27000		
91 - 1	13/06/2015	20/06/2015	7	37 °	sikadur 32	15	26000		
91 - 2	13/06/2015	20/06/2015	7	37 °	sikadur 32	15	25500		
92 - 1	14/06/2015	20/06/2015	6	37 °	sikadur 32	15	26500		
92 - 2	21/06/2015	20/07/2015	29	37 °	Chema Epox	15	20750		
93 - 1	21/06/2015	20/07/2015	29	37 °	Chema Epox	15	21500		
93 - 2	21/06/2015	20/07/2015	29	37 °	Chema Epox	15	21250		
94 - 1	22/06/2015	06/07/2015	14	37 °	Chema Epox	15	19000		
94 - 2	22/06/2015	06/07/2015	14	37 °	Chema Epox	15	19500		
95 - 1	08/06/2015	06/07/2015	28	45 °	sikadur 32	15	32250		
95 - 2	08/06/2015	06/07/2015	28	45 °	sikadur 32	15	32000		
96 - 1	22/06/2015	06/07/2015	14	37 °	Chema Epox	15	20000		
96 - 2	19/06/2015	26/06/2015	7	37 °	Chema Epox	15	16500		
97 - 1	19/06/2015	26/06/2015	7	37 °	Chema Epox	15	16250		
97 - 2	19/06/2015	26/06/2015	7	37 °	Chema Epox	15	16000		

Resistencia a la compresión de diseño f'c = 280 kg/cm2									
CODIGO DE PROBETA	FECHA DE VACEADO	FECHA DE ENSAYO	EDAD DE PROBETA (días)	ANGULO DE CORTE	EPOXICO ADHERENTE	DIAM. (cm)	CARGA DE ROTURA (Kgf)		
99 - 1	09/06/2015	06/07/2015	27	45 °	sikadur 32	15	31750		
99 - 2	09/06/2015	24/06/2015	15	45 °	sikadur 32	15	28000		
100 - 1	09/06/2015	26/06/2015	17	45 °	sikadur 32	15	28250		
100 - 2	11/06/2015	26/06/2015	15	45 °	sikadur 32	15	28500		
101 - 1	11/06/2015	20/06/2015	9	45 °	sikadur 32	15	25500		
101 - 2	11/06/2015	20/06/2015	9	45 °	sikadur 32	15	25000		
102 - 1	12/06/2015	20/06/2015	8	45 °	sikadur 32	15	25500		
102 - 2	21/06/2015	20/07/2015	29	45 °	Chema Epox	15	29500		
103 - 1	21/06/2015	20/07/2015	29	45 °	Chema Epox	15	29500		
103 - 2	21/06/2015	20/07/2015	29	45 °	Chema Epox	15	29250		
104 - 1	22/06/2015	06/07/2015	13	45 °	Chema Epox	15	22250		
104 - 2	22/06/2015	06/07/2015	13	45 °	Chema Epox	15	21750		
106 - 1	22/06/2015	06/07/2015	13	45 °	Chema Epox	15	21750		
106 - 2	24/06/2015	01/07/2015	7	45 °	Chema Epox	15	19250		
107 - 1	24/06/2015	01/07/2015	7	45 °	Chema Epox	15	19250		
107 - 2	24/06/2015	01/07/2015	7	45 °	Chema Epox	15	19750		
108 - 1	24/06/2015	23/07/2015	29	45 °	Zeta Pox	15	32500		
108 - 2	24/06/2015	23/07/2015	29	45 °	Zeta Pox	15	33000		
109 - 1	14/06/2015	13/07/2015	29	30 °	sikadur 32	15	30000		
109 - 2	14/06/2015	13/07/2015	29	30 °	sikadur 32	15	29750		
110 - 1	14/06/2015	13/07/2015	29	30 °	sikadur 32	15	30500		
110 - 2	12/06/2015	26/06/2015	14	30 °	sikadur 32	15	25000		
111 - 1	12/06/2015	26/06/2015	14	30 °	sikadur 32	15	24000		
111 - 2	12/06/2015	26/06/2015	14	30 °	sikadur 32	15	24500		
112 - 1	15/06/2015	22/06/2015	7	30 °	sikadur 32	15	22500		
112 - 2	15/06/2015	22/06/2015	7	30 °	sikadur 32	15	22500		
113 - 1	16/06/2015	22/06/2015	6	30 °	sikadur 32	15	21500		
113 - 2	21/06/2015	20/07/2015	29	30 °	Chema Epox	15	19500		
114 - 1	21/06/2015	20/07/2015	29	30 °	Chema Epox	15	19000		
114 - 2	21/06/2015	20/07/2015	29	30 °	Chema Epox	15	20000		
115 - 1	21/06/2015	06/07/2015	15	30 °	Chema Epox	15	17750		
115 - 2	21/06/2015	06/07/2015	15	30 °	Chema Epox	15	17750		
116 - 1	21/06/2015	06/07/2015	15	30 °	Chema Epox	15	18000		
116 - 2	19/06/2015	26/06/2015	7	30 °	Chema Epox	15	15000		
117 - 1	24/06/2015	22/06/2015	28	37 °	Zeta Pox	15	30500		
117 -2	24/06/2015	22/06/2015	28	37 °	Zeta Pox	15	31000		
118 - 1	24/06/2015	23/07/2015	29	45 °	Zeta Pox	15	32000		
118 - 2	27/06/2015	13/07/2015	16	45 °	Zeta Pox	15	29000		
119 - 1	27/06/2015	13/07/2015	16	45 °	Zeta Pox	15	29250		
119 - 2	27/06/2015	13/07/2015	16	45 °	Zeta Pox	15	29500		
120 - 1	28/06/2015	06/07/2015	8	45 °	Zeta Pox	15	27500		
120 - 2	28/06/2015	06/07/2015	8	45 °	Zeta Pox	15	27750		

Resistencia a la compresión de diseño f'c = 280 kg/cm2									
CODIGO DE PROBETA	FECHA DE VACEADO	FECHA DE ENSAYO	EDAD DE PROBETA (días)	ANGULO DE CORTE	EPOXICO ADHERENTE	DIAM. (cm)	CARGA DE ROTURA (Kgf)		
121 - 1	24/06/2015	22/06/2015	28	37 °	Zeta Pox	15	32500		
121 - 2	27/06/2015	13/07/2015	16	37 °	Zeta Pox	15	25750		
123 - 1	27/06/2015	13/07/2015	16	37 °	Zeta Pox	15	25000		
123 - 2	27/06/2015	13/07/2015	16	37 °	Zeta Pox	15	27500		
125 - 1	01/07/2015	09/07/2015	8	37 °	Zeta Pox	15	23250		
125 - 2	01/07/2015	09/07/2015	8	37 °	Zeta Pox	15	23500		
126 - 1	01/07/2015	09/07/2015	8	37 °	Zeta Pox	15	23750		
127 - 1	19/06/2015	26/06/2015	7	30 °	Chema Epox	15	15500		
127 - 2	19/06/2015	26/06/2015	7	30 °	Chema Epox	15	15500		
128 - 1	24/06/2015	23/07/2015	29	30 °	Zeta Pox	15	25500		
128 - 2	24/06/2015	23/07/2015	29	30 °	Zeta Pox	15	25750		
129 - 1	24/06/2015	23/07/2015	29	30 °	Zeta Pox	15	25500		
129 - 2	28/06/2015	13/07/2015	15	30 °	Zeta Pox	15	23500		
130 - 1	28/06/2015	13/07/2015	15	30 °	Zeta Pox	15	23750		
130 - 2	28/06/2015	13/07/2015	15	30 °	Zeta Pox	15	23250		
131 - 1	01/07/2015	09/07/2015	8	30 °	Zeta Pox	15	21500		
131 - 2	01/07/2015	09/07/2015	8	30 °	Zeta Pox	15	22750		
132 - 1	01/07/2015	09/07/2015	8	30 °	Zeta Pox	15	22250		
133 - 1	28/06/2015	06/07/2015	8	45 °	Zeta Pox	15	26750		

12. Datos de Ensayos de Rotura de Especímenes de Control

CODIGO DE PROBETA	FECHA DE VACEADO	FECHA DE ENSAYO	EDAD DE PROBETA (días)	DIAM. (cm)	CARGA DE ROTURA (Kgf)
01	23/06/2015	01/07/2015		15	20750
02	23/06/2015	01/07/2015		15	21250
03	23/06/2015	01/07/2015	7	15	24750
04	23/06/2015	01/07/2015	,	15	25000
05	23/06/2015	01/07/2015		15	31250
06	23/06/2015	01/07/2015		15	31000
07	24/06/2015	09/07/2015		15	27750
08	24/06/2015	09/07/2015		15	27250
09	24/06/2015	09/07/2015	14	15	34750
10	24/06/2015	09/07/2015		15	34250
11	24/06/2015	09/07/2015		15	39250
12	24/06/2015	09/07/2015		15	39000
13	25/06/2015	23/07/2015		15	39000
14	25/06/2015	23/07/2015		15	40000
15	25/06/2015	23/07/2015	28	15	44250
16	25/06/2015	23/07/2015	20	15	44000
17	25/06/2015	23/07/2015		15	54000
18	25/06/2015	23/07/2015		15	53750

13. Datos de Ensayos de Flexión de Vigas Experimentales

CODIGO DE PROBETA	FECHA DE VACEADO	FECHA DE ENSAYO	EDAD DE PROBETA (días)	ANGULO DE CORTE	EPOXICO ADHERENTE	L (cm)	b (cm)	d (cm)	CARGA DE ROTURA (Kgf)
01	03/08/2015	31/08/2015		15 °	45 ° Chema Epox 45 ° Zeta Pox	20	15	15	2000
02	03/08/2015	31/08/2015		45		20	15	15	2500
03	03/08/2015	31/08/2015	28	45°		20	15	15	3500
04	03/08/2015	31/08/2015	20			20	15	15	3750
05	03/08/2015	31/08/2015			sikadur 32	20	15	15	4500
06	03/08/2015	31/08/2015		40		20	15	15	4750

ANEXO B DESCRIPCION FOTOGRAFICA

B.1. ENSAYOS REALIZADOS EN EL LABORATORIO DE LA FICSA (LEM)

B.1.1. GRANULOMETRÍA DE AGREGADO FINO

Fotografía B.1.1. Orden de mallas para tamizar agregado fino.

Fotografía B.1.2. Inicio de tamizado de muestra.

Fotografía B.1.3. Tamizado de la muestra de agregado fino.

Fotografía B.1.4. Colocación de muestra retenida de agregado fino en bandeja.

B.1.2. GRANULOMETRÍA DE AGREGADO GRUESO

Fotografía B.1.5. Orden de mallas para tamizar agregado grueso.

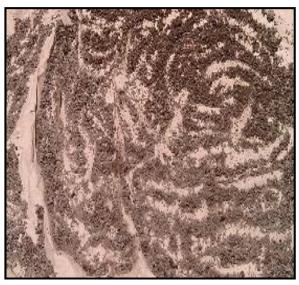
Fotografía B.1.6. Tamizado de la muestra de agregado grueso

B.1.3. CONTENIDO DE HUMEDAD DE AGREGADO FINO Y GRUESO

Fotografía B.1.7. Pesado de muestra de agregado fino.

Fotografía B.1.8. Colocación de muestra en horno para secado por 24 horas.

B.1.4. PESO ESPECIFICO DE MASA Y GRADO DE ABSORCIÓN DE AGREGADO FINO


Fotografía B.1.9. Pesado de Matraz con agua y muestra de agregado fino.

Fotografía B.1.10. Vaciado de agua.

Fotografía B.1.11. Sacando muestra de agregado fino saturada del matraz.

Fotografía B.1.12. Muestra de agregado fino superficialmente seca.

B.1.5. PESO ESPECIFICO DE MASA Y GRADO DE ABSORCIÓN DE AGREGADO GRUESO

Fotografía B.1.13. Lavado de muestra de agregado grueso.

Fotografía B.1.14. Retiro de muestra de agregado grueso secado por 24 horas.

Fotografía B.1.15. Saturado de muestra de agregado grueso por 24 horas.

Fotografía B.1.16. Pesado de muestra de agregado grueso superficialmente seca.

B.1.6. PESO UNITARIO SUELTO DEL AGREGADO FINO

Fotografía B.1.17. Pesado de molde.

Fotografía B.1.18. Llenado de molde con agregado fino, sin varillar.

Fotografía B.1.19. Enrasado de muestra de agregado fino.

Fotografía B.1.20. Pesado de molde y muestra de agregado fino.

B.1.7. PESO UNITARIO SUELTO DEL AGREGADO GRUESO

Fotografía B.1.21. Llenado de molde con agregado grueso, sin varillar.

Fotografía B.1.22. Pesado de molde y muestra de agregado grueso

B.1.8. PESO UNITARIO VARILLADO DEL AGREGADO FINO

Fotografía B.1.23. Llenado de molde con agregado fino, varillando.

Fotografía B.1.24. Enrasado de muestra de Agregado fino.

B.1.9. PESO UNITARIO VARILLADO DEL AGREGADO GRUESO

Fotografía B.1.25. Llenado de molde por capas con agregado grueso.

Fotografía B.1.26. Varillando capa de agregado grueso.

B.2. PROCESO DE ELABORACIÓN Y ENSAYO DE PROBETAS SEGÚN MÉTODO DE RECONSTITUCIÓN

B.2.1. ELABORACIÓN DE PRIMERA ETAPA DE ESPÉCIMEN

Fotografía B.2.1. Cortadora de concreto seccionando espécimen.

Fotografía B.2.2. Especímenes seccionados con ángulos de inclinación de 30°, 37° y 45°

B.2.2. LIMPIEZA Y COLOCACIÓN DE EPOXICO EN PLANO DE UNIÓN ENTRE CONCRETO ANTIGUO Y CONCRETO NUEVO

Fotografía B.2.3. Espécimen con superficie de unión 50 % picado.

Fotografía B.2.4. Pesado y mezclado de epóxico adherente.

Fotografía B.2.5. Limpieza de superficie de unión.

B.2.3. COLOCACIÓN DE CONCRETO NUEVO SEGUNDA ETAPA

Fotografía B.2.8. Varillando la primera capa con 25 golpes.

Fotografía B.2.9. Completando el cilindro con concreto nuevo.

Fotografía B.2.10. Varillado de tercera capa de concreto nuevo.

Fotografía B.2.11. Especímenes desencofrados a 24 horas de edad del concreto nuevo.

B.2.4. ENSAYOS DE PROBETAS EXPERIMENTALES A COMPRESIÓN

Fotografía B.2.12. Traslado de especímenes experimentales a laboratorio.

Fotografía B.2.13. Concreto nuevo a edad de 7 días que falló por compresión.

Fotografía B.2.14. Concreto nuevo a edad de 14 días que falló por deslizamiento (corte).

Fotografía B.2.15. Concreto nuevo a edad de 28 días que falló por deslizamiento (corte)

B.3. PROCESO DE ELABORACIÓN Y ENSAYO DE PROBETAS DE CONTROL

Fotografía B.2.16. Probetas a de concreto monolítico.

Fotografía B.2.17. Ensayo de probeta de control a compresión.

B.3. PROCESO DE ELABORACIÓN Y ENSAYO DE VIGAS EXPERIMENTALES

Fotografía B.3. 1. Varillado por capas de concreto en vigas.

Fotografía B.3. 2. Enrasado de concreto en vigas, elaboración de primera etapa.

Fotografía B.3. 3. Colocación de Chema Epox Adhesivo 32 en superficie de contacto.

Fotografía B.3. 4. Colocación de Sikadur 32 Gel en superficie de contacto.

Fotografía B.3. 5. Colocación de Zeta Pox en superficie de contacto.

Fotografía B.3. 6. Completando viga con concreto f´c=210 kg/cm2.

Fotografía B.3. 7. Ensayo de viga de concreto a flexión.

B.4. PROCESO DE ELABORACIÓN Y ENSAYO DE PROBETAS SIMULANDO PROCESO CONSTRUCTIVO EN OBRA

B.4.1. ELABORACIÓN DE PRIMERA ETAPA DE ESPECIMEN

Fotografía B.4. 1. Llenado de concreto en molde.

Fotografía B.4. 2. varillado de concreto por capas.

Fotografía B.4. 3. Elaborando superficie de contacto inclinada.

Fotografía B.4. 4. Superficie de contacto inclinada con rugosidad intencional.

B.4.2. LIMPIEZA Y COLOCACIÓN DE EPOXICO EN PLANO DE UNION ENTRE CONCRETO ANTIGUO Y CONCRETO NUEVO

Fotografía B.4. 5. Escobillado de superficie de contacto inclinada.

Fotografía B.4. 6. Limpieza de superficie de contacto inclinada.

Fotografía B.4. 7. Aplicación de epóxico chema epox sobre superficie de contacto inclinada.

Fotografía B.4. 8. Aplicación de epóxico zeta pox sobre superficie de contacto inclinada.

B.4.3. COLOCACIÓN DE CONCRETO NUEVO SEGUNDA ETAPA

Fotografía B.4. 9. Colocación de espécimen dentro de molde, previa aplicación de epóxico adherente.

Fotografía B.4. 10. Varillado de concreto de segunda etapa por capas.

Fotografía B.4. 11. Llenado de concreto de segunda etapa.

Fotografía B.4. 12. Enrasado de concreto.

B.4.4. ENSAYOS DE PROBETAS EXPERIMENTALES A COMPRESIÓN

Fotografía B.4. 13. Ensayo de compresión, falla sin deslizamiento.

Fotografía B.4. 14. Falla por compresión.