Mostrar el registro sencillo del ítem

dc.contributor.advisorOblitas Vera, Carlos Leonardoes_PE
dc.contributor.authorLa Madrid Távara, Luis Eduardoes_PE
dc.date.accessioned2019-07-30T21:32:00Z
dc.date.available2019-07-30T21:32:00Z
dc.date.issued2019-07-30es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12893/4737es_PE
dc.description.abstractEl presente trabajo tiene como objetivo principal generar un algoritmo de detección de fruta en mal estado y así permita el control de calidad; para ello se utilizarán técnicas de procesamiento digital de imágenes tales como histogramas, uso de operadores morfológicos, cambios a otros espacios de color entre otras. El estudio de la investigación se basó en un programa realizado con MATLAB que simuló a partir de imágenes de entrada, donde se describieron una serie de pasos basados en procedimientos de procesamiento digital de imágenes que determinaron que la fruta a analizar estaba en buen estado o no, procurando determinar qué tipo de defecto se detecta. En este trabajo de investigación, en el capítulo 2 hizo referencia a la descripción de las técnicas de procesamiento digital de imágenes, así como técnicas de modelado geométrico y procesos de conocimiento. Mientras que en el capítulo 3 hace referencia a la descripción del sistema donde principalmente la imagen es convertida a una matriz de formato uint8 a formato double, donde se realizó operaciones matemáticas para separar el melocotón del fondo; posteriormente la imagen segmentada pasó a un detector de contornos con el objetivo de obtener un valor que resultó decisorio y así determinar si presenta algún defecto. En el capítulo 4 se mostró los resultados y observaciones obtenidos de las muestras de diversos melocotones, identificados por defectos como picoteados, pulpa visible y golpe; de las cuales se sometieron 100 imágenes analizadas, 11 fallos han sido por este tipo de clasificación defectuosa y se ha acertado un 89%, donde dicho resultado muestra un porcentaje de acierto favorable. Finalmente se concluye que se logró implementar exitosamente algoritmos para la detección de frutos en buen o mal estado, así como la identificación de objetos extraños mediante la segmentación, detección de bordes y el análisis de histogramas obteniendo un tiempo de respuestas del algoritmo de 69.5 segundos por imagen.es_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional Pedro Ruiz Galloes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/es_PE
dc.subjectImágenes Bidimensionaleses_PE
dc.subjectHistogramases_PE
dc.subjectVisión por el computadores_PE
dc.titleImplementación de un algoritmo de control de calidad para la selección de productos agrícolas utilizando visión artificiales_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero Electrónicoes_PE
thesis.degree.grantorUniversidad Nacional Pedro Ruiz Gallo. Facultad de Ciencias Físicas y Matemáticases_PE
thesis.degree.disciplineIngeniería Electrónicaes_PE
dc.publisher.countryPEes_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.02.00es_PE
renati.typehttp://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttp://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.discipline712049es_PE


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess
Universidad Nacional Pedro Ruiz Gallo

Calle Juan XXIII 391 Lambayeque - Perú | Telf. 283146 - 283115 - 282120 - 282356

Todos los contenidos de repositorio.unprg.edu.pe están bajo la Licencia Creative Commons v.4.0

repositorio@unprg.edu.pe