Mostrar el registro sencillo del ítem

dc.contributor.advisorAntón Pérez, Juan Manueles_PE
dc.contributor.authorCasas Leguía, Ninive Joeles_PE
dc.contributor.authorGuzmán Reyes, Rowell Enriquees_PE
dc.date.accessioned2020-08-26T14:23:36Z
dc.date.available2020-08-26T14:23:36Z
dc.date.issued2020-08-26es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12893/8591es_PE
dc.description.abstractLa presente investigación tuvo como objetivo general determinar si una red neuronal con función logística proporciona un modelo de pronóstico de depresión en adultos mayores con menor error que la Regresión Logística Dicotómica, de acuerdo a las variables predictoras consideradas, “Hospital Provincial Docente Belén y CIAM” de Lambayeque 2019. Utilizando como método de estudio de nivel observacional-analítico y transversal, con 128 adultos mayores que acudieron al “Hospital Provincial Docente Belén y CIAM” de Lambayeque, los cuales se clasificaron con depresión: Leve y Moderada-Severa. Para definir los factores asociados a la depresión se incluyeron variables independientes (edad, género, estado civil, ingreso económico, actividad física, actividad laboral, actividad sexual, atención familiar, autoridad familiar y recreación), se utilizaron los modelos de regresión logística y red neuronal. En los resultados se demostró la prevalencia de depresión fue de 34,4% moderada-severa y 65,6% leve. Se encontraron asociaciones significativas respecto a la depresión: género, actividad física, actividad sexual, atención familiar, pérdida de autoridad y pasatiempo con p<0,05. En el modelo de regresión logística mostró que no tener atención familiar (OR=26,55, IC95% 8,41-98,81) y no tener pasatiempo (OR=6,59,IC95% 2,01–24,21) fueron considerados como factores de riesgo, asimismo en la red neuronal se encontraron los mismos factores de riesgo con un penalizador decay = 5e-2 y rang = 0,7. Se concluyó que la técnica multivariante de regresión logística dicotómica y la red neuronal proporcionan características similares de pronóstico: alta precisión (91,67%), f1-score (89,53%), alta sensibilidad (87,50%), especificidad (93,75%) y bajo error (8,33%).es_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional Pedro Ruiz Galloes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/es_PE
dc.subjectDepresiónes_PE
dc.subjectRed neuronales_PE
dc.subjectRegresión logísticaes_PE
dc.titleRegresión logística dicotómica versus red neuronal para predecir depresión en adultos mayores. Hospital Provincial Docente “Belén” y CIAM Lambayeque, 2019es_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameLicenciado en Estadísticaes_PE
thesis.degree.grantorUniversidad Nacional Pedro Ruiz Gallo. Facultad de Ciencias Físicas y Matemáticases_PE
thesis.degree.disciplineEstadísticaes_PE
dc.publisher.countryPEes_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.01.03es_PE
renati.typehttp://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttp://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.discipline542016es_PE


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess
Universidad Nacional Pedro Ruiz Gallo

Calle Juan XXIII 391 Lambayeque - Perú | Telf. 283146 - 283115 - 282120 - 282356

Todos los contenidos de repositorio.unprg.edu.pe están bajo la Licencia Creative Commons v.4.0

repositorio@unprg.edu.pe