Mostrar el registro sencillo del ítem

dc.contributor.advisorLara Romero, Luises_PE
dc.contributor.authorRojas Huamán, Everes_PE
dc.date.accessioned2019-11-27T20:13:41Z
dc.date.available2019-11-27T20:13:41Z
dc.date.issued2019-11-27es_PE
dc.identifier.otherBC-TES-4466
dc.identifier.urihttps://hdl.handle.net/20.500.12893/6077es_PE
dc.description.abstractEl presente trabajo de investigación intitulado: Existencia y unicidad de la solución del problema de Cauchy-Dirichlet para problemas parabólicos en un dominio con frontera libre y puntos singulares, tiene como propósito responder al problema de investigación: ¿Cuáles son las condiciones necesarias y suficientes de existencia y unicidad de la solución del problema de Cauchy-Dirichlet para problemas parabólicos en un dominio con frontera libre y puntos singulares?; a través de la hipótesis que los problemas parabólicos definidos en dominios con frontera móvil, bajo condiciones de regularidad, siempre poseen solución, y que, la unicidad de la solución se garantiza, exigiendo cierto grado de aproximación de la tangente horizontal con la curva del contorno del dominio en los puntos singulares de contacto o garantizando la condición de Lipschitz en una vecindad del punto singular. Para este tipo de problemas, son conocidos algunos resultados, que van desde el establecimiento de condiciones que garantizan la existencia y unicidad de la solución, el análisis de dependencia que tiene la solución ante las variaciones del contorno del dominio, etc. hasta la búsqueda de métodos eficientes de solución tanto analíticos como numéricos. Todos estos resultados, son conocidos para espacios funcionales específicos. En el presente trabajo de investigación, se utilizó el tipo de investigación básico descriptivo, con una metodología de trabajo consistente en utilizar el Teorema de Lax Miligram en la demostración de la existencia de la solución débil de problemas parabólicos con condiciones tipo Dirichlet sobre la frontera libre y puntos singulares, en un espacio de Sóbolev previamente definido. Con respecto a la unicidad, ésta fue probada de manera clásica, buscando una solución idénticamente nula de la ecuación homogénea correspondiente de tipo parabólico, con la particularidad de considerar primeramente subdominios que no contienen puntos singulares, y luego utilizando propiedades de continuidad, tomar límites y abarcar subdominios que contienen en su frontera puntos singulares.es_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional Pedro Ruiz Galloes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/es_PE
dc.subjectUnicidades_PE
dc.subjectDirichletes_PE
dc.subjectProblemas parabólicoses_PE
dc.titleExistencia y unicidad de la solución del problema de Cauchy-Dirichlet para problemas parabólicos en un dominio con frontera libre y puntos singulareses_PE
dc.typeinfo:eu-repo/semantics/masterThesises_PE
thesis.degree.nameMaestro en Ciencias con mención en Matemática Aplicadaes_PE
thesis.degree.grantorUniversidad Nacional Pedro Ruiz Gallo. Escuela de Posgradoes_PE
thesis.degree.disciplineCiencias con mención en Matemática Aplicadaes_PE
dc.publisher.countryPEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.02es_PE
renati.typehttp://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttp://purl.org/pe-repo/renati/level#maestroes_PE
renati.discipline541037es_PE


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess
Universidad Nacional Pedro Ruiz Gallo

Calle Juan XXIII 391 Lambayeque - Perú | Telf. 283146 - 283115 - 282120 - 282356

Todos los contenidos de repositorio.unprg.edu.pe están bajo la Licencia Creative Commons v.4.0

repositorio@unprg.edu.pe